Late Cretaceous to Cenozoic tectonic evolution of the NW Arabian platform in NW Syria

2010 ◽  
Vol 341 (1) ◽  
pp. 305-327 ◽  
Author(s):  
Abdelkarim Al Abdalla ◽  
Eric Barrier ◽  
Anis Matar ◽  
Carla Muller
10.1144/m54.5 ◽  
2021 ◽  
Vol 54 (1) ◽  
pp. 67-103
Author(s):  
Andreas Scharf ◽  
Frank Mattern ◽  
Mohammed Al-Wardi ◽  
Gianluca Frijia ◽  
Daniel Moraetis ◽  
...  

AbstractThe tectonic evolution of the Oman Mountains as of the Neoproterozoic begins with a major extensional event, the Neoproterozoic Abu Mahara rifting. It was followed by the compressional Nabitah event, still during the Neoproterozoic, in Oman but possibly not in the study area. During the earliest Cambrian, the Jabal Akhdar area was affected by the Cadomian Orogeny, marked by NE--SW shortening. It is unclear, whether the Saih Hatat area was exposed to the Cadomian deformation, too. Still during the lower Cambrian, the Angudan Orogeny followed, characterized by NW--SE shortening. An episode of rifting affected the Saih Hatat area during the mid-Ordovician. During the mid-Carboniferous, both dome areas were deformed by tilting and large-scale open folding in the course of the ‘Hercynian’ event. As a consequence, a major unconformity formed. As another Late Paleozoic event, the Permian break-up of Pangaea and subsequent formation of the Hawasina ocean basin, are recorded in the Southeastern Oman Mountains. As a result, a passive margin formed which existed until the mid-Cretaceous, characterized by deposition of mostly shelfal carbonates. This interval of general tectonic quiescence was interrupted during the early Jurassic by uplift and tilting of the Arabian Platform. The platform collapsed during the late Cretaceous, related to the arrival of the obducted allochthonous nappes including the Semail Ophiolite, transforming the passive margin to an active margin.The Semail Ophiolite formed most likely above a subduction zone within the Neo-Tethys Ocean during the Cenomanian while parts of the Arabian Plate were subducted to the NE. Formation of oceanic lithosphere and SW-thrusting was broadly coeval, resulting in ophiolite obduction onto the Hawasina Basin. The Semail Ophiolite and the Hawasina rocks combined were thrust further onto the Arabian Plate. Their load created a foreland basin and forebulge within the Arabian Platform. Once the continental lithosphere of the Arabian Platform was forced into the subduction zone, a tear between the dense oceanic lithosphere and the buoyant continental lithosphere developed. This led to rapid uplift and exhumation of subducted continental lithosphere of the Saih Hatat area, while obduction was still going on, causing in multiple and intense folding/thrusting within the eastern Saih Hatat Dome. Exhumation of the Saih Hatat Dome was massive. The emplacement of the ophiolite was completed during the Campanian/Maastrichtian. For completeness, we also present alternative models for the developmental history of the Semail Ophiolite.Immediately after emplacement, the Arabian lithosphere underwent intense top-to-the-NE extensional shearing. Most of the Saih Hatat Dome was exhumed during the latest Cretaceous to Early Eocene, associated with major extensional shearing at its flanks. Further convergence during the late Eocene to Miocene resulted in exhumation of the Jabal Akhdar Dome and some gentle exhumation of the Saih Hatat Dome, shaping the present-day Southeastern Oman Mountains. In the coastal area, east and SE of the Saih Hatat Dome, some late Cretaceous to present-day uplift is evident by, e.g., uplifted marine terraces. The entire Oman Mountains are uplifting today, which is evident by the massive wadi incision into various rock units, including wadi deposits which may form overhangs.


GeoArabia ◽  
2003 ◽  
Vol 8 (1) ◽  
pp. 91-124 ◽  
Author(s):  
Adel R Moustafa ◽  
Ati Saoudi ◽  
Alaa Moubasher ◽  
Ibrahim M Ibrahim ◽  
Hesham Molokhia ◽  
...  

ABSTRACT An integrated surface mapping and subsurface study of the Bahariya Depression aided the regional subsurface interpretation. It indicated that four major ENE-oriented structural belts overlie deep-seated faults in this part of the ‘tectonically stable’ area of Egypt. The rocks of the Bahariya area were deformed in the Late Cretaceous, post-Middle Eocene, and Middle Miocene-and subsurface data indicated an early Mesozoic phase of normal faulting. The Late Cretaceous and post-Middle Eocene deformations reactivated the early normal faults by oblique slip and formed a large swell in the Bahariya region. The crest was continuously eroded whereas its peripheries were onlapped by Maastrichtian and Tertiary sediments. The tectonic evolution of the Bahariya region shows great similarity to the deformation of the ‘tectonically unstable’ area of the northern Western Desert where several hydrocarbon fields have been discovered. This similarity may indicate that the same phases of deformation could extend to other basins lying in the ‘tectonically stable’ area, such as the Asyut, Dakhla, Nuqura, and El Misaha basins.


1986 ◽  
Vol 11 ◽  
pp. 1-46
Author(s):  
Ole Valdemar Vejbæk

The Lower Cretaceous sequence of the Danish Central Trough has been studied by the use of seismic stratigraphic analysis. The sequence has been subdivided into 6 seismic stratigraphic units named LCA, LCB, LCC, LCD, LCE and LCF. The studied area includes the Feda Graben, the Gertrud Graben (new name), the Tail End Graben, the Arne-Elin Graben (new name) and the Salt Dome Province, whereas the Grensen Nose and the Outer Rough Basin are not included. These basins are separated by the Inge High, the Mads High, the Gert Ridge (new name), the Manda! High, the Heno Plateau (new name) and the Pollerne Ridge (new name). The fault controlled subsidence of the Lower Cretaceous basins is claimed to have been governed by left lateral transtensional wrenching. This wrenching gradually ceased and gave way to regional subsidence with intermittent events of inversion resulting from right lateral transpressive wrenching in the Late Cretaceous and Early Tertiary. The first weak inversion is shown to have occurred in the Late Hauterivian. Sedimentation was influenced by a general gradual relative rise in sea-level starting with a low in the Volgian - Early Ryazanian times coeval with the deposition of the Farsund Formation and culminating in the Late Cretaceous. At the beginning of the Early Cretaceous gravity flow became an important depositional mechanism and resulted in preferred deposition in topographical lows, which were generated by simple tensional block-faulting or by wrench-induced, rapid local subsidence. As tectonic activity decreased and the elastic source areas became more remote and worn down, depocentres became less pronounced, especially with the last unit of the Lower Cretaceous.


2018 ◽  
Vol 87 ◽  
pp. 139-156 ◽  
Author(s):  
Sofía B. Iannelli ◽  
Lucas M. Fennell ◽  
Vanesa D. Litvak ◽  
Lucía Fernández Paz ◽  
Alfonso Encinas ◽  
...  

Lithos ◽  
2014 ◽  
Vol 208-209 ◽  
pp. 202-219 ◽  
Author(s):  
Xin-Song Wang ◽  
Rui-Zhong Hu ◽  
Xian-Wu Bi ◽  
Cheng-Biao Leng ◽  
Li-Chuan Pan ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document