scholarly journals Structural setting and tectonic evolution of the Bahariya Depression, Western Desert, Egypt

GeoArabia ◽  
2003 ◽  
Vol 8 (1) ◽  
pp. 91-124 ◽  
Author(s):  
Adel R Moustafa ◽  
Ati Saoudi ◽  
Alaa Moubasher ◽  
Ibrahim M Ibrahim ◽  
Hesham Molokhia ◽  
...  

ABSTRACT An integrated surface mapping and subsurface study of the Bahariya Depression aided the regional subsurface interpretation. It indicated that four major ENE-oriented structural belts overlie deep-seated faults in this part of the ‘tectonically stable’ area of Egypt. The rocks of the Bahariya area were deformed in the Late Cretaceous, post-Middle Eocene, and Middle Miocene-and subsurface data indicated an early Mesozoic phase of normal faulting. The Late Cretaceous and post-Middle Eocene deformations reactivated the early normal faults by oblique slip and formed a large swell in the Bahariya region. The crest was continuously eroded whereas its peripheries were onlapped by Maastrichtian and Tertiary sediments. The tectonic evolution of the Bahariya region shows great similarity to the deformation of the ‘tectonically unstable’ area of the northern Western Desert where several hydrocarbon fields have been discovered. This similarity may indicate that the same phases of deformation could extend to other basins lying in the ‘tectonically stable’ area, such as the Asyut, Dakhla, Nuqura, and El Misaha basins.

Geologos ◽  
2010 ◽  
Vol 16 (4) ◽  
pp. 223-234 ◽  
Author(s):  
M. Karaman

The tectonic evolution of Lake Eğirdir, West Turkey Lake Eğirdir is one of the most important fresh-water lakes of Turkey. It has a tectonics-related origin. The area formed under a roughly N-S compressional tectonic regime during the Middle Miocene. The stresses caused slip faults west and east of Isparta Angle, and the lake formed at the junction of these faults. The area subsided between normal faults, thus creating the topographic condition required for a lake. The lacustrine sediments have fundamentally different lithologies. After the Late Miocene, central Anatolia started to move westwards, but western Anatolia moved in a SW direction along the South-western Anatolian Fault, which we suggest to have a left lateral slip, which caused that the Hoyran Basin moved t7 km towards the SW and rotated 40° counterclockwise relative to Lake Eğirdir.


2021 ◽  
Author(s):  
Francesca Stendardi ◽  
Gianluca Vignaroli ◽  
Giulio Viola

<p>The Northern Apennines are an accretionary wedge formed in response to the Late Cretaceous-Eocene closure of the Ligurian-Piedmont ocean and the subsequent Oligocene-Miocene convergence and collision between Africa and Europe. The wedge is formed by a stack of different paleogeographic units which, from the innermost to the outermost and from top to bottom, are: (i) the Ligurian Domain (formed by Jurassic ophiolites and their Cretaceous-to-Paleocene sedimentary cover); (ii) the Sub-Ligurian Domain (Paleocene-to-lower Miocene deep marine sediments and turbidites); (iii) the Tuscan-Umbria-Marche Domain (mostly including Jurassic-to-Oligocene platform and basinal carbonate successions, overlain by Miocene-Pliocene turbidites). The wedge is shaped by WNW-ESE-striking and SW-dipping thrusts, accommodating a general northeastward tectonic transport. Atop of the deformed Ligurian Domain there occur the Epiligurian Units, which consist of middle Eocene-upper Miocene bathyal to shallow-water siliciclastic deposits infilling wedge-top basins. These Units presently fill in separate basins with poor lateral interconnectivity due to erosion and deformation. Since the Miocene, thrusting toward the (eastern) orogenic foreland occurred simultaneously with extension in the (western) hinterland domain, causing the formation of NW-SE-striking normal faults. Presently, focal mechanisms of the stronger earthquakes constrain dominant thrusting associated with NE-SW regional shortening, whereas the extensional regime controls the seismicity along the axial portion of the wedge. This recently launched study aims to better characterize the deformation structures affecting the Epiligurian Units in the internal and external sectors of the Northern Apennines (Emilia-Romagna Region) with the goal to provide a comprehensive syn-to-post accretion evolutionary scenario for these shallow basins. In particular, deformation structures affecting these wedge-top sequences of the inner (southwestern) side of the wedge are being studied by their systematic geometric and kinematic multiscalar and multitechnique characterization. Top-to-the NE, WNW-ESE-striking thrusts/reverse faults, dipping moderately to SSW are defined by planar slip surfaces associated with thin clastic damage zones. Top-to-the SE, ENE-WSW-striking thrusts/reverse faults, are instead generally devoid of well-developed damage zones. These contractional faults are systematically cut by NW-SE and NE-SW-striking normal and oblique faults systems, characterized by mutually intersecting fault planes accommodating centimetric to decimetric throws. Associated with the extensional structures occur widespread cataclastic and disaggregation deformation bands. They are found as either single bands or clusters, cutting across upper Eocene coarse-grained sandstones. Our preliminary results show that the Epiligurian Units experienced a complex tectonic evolution, including NNE-SSW shortening followed by NE-SW extension. The structural record of these wedge top basins is useful to infer the kinematics and rate of wedge build up and tearing down during the progressive evolution of the continental collision. The Epiligurian Units can thus be considered as useful gages of the deformation history of the Northern Apennines wedge, with noteworthy implications on its current seismotectonic setting.</p>


2001 ◽  
Vol 34 (1) ◽  
pp. 243 ◽  
Author(s):  
S. KOKKALAS

Stress and strain analysis has been used to reconstruct the post-Oligocene geodynamics of the Kymi-Aliveri basin: The Kymi-Aliveri basin occupies the footwall of the Kymi-Thrust, which formed during the Middle Miocene as a large transpressional structure in the late orogenic stages of the Hellenides. Subsequently, in the Upper Miocene the shape of the basin was strongly modified by an orthogonal system of NE and NW trending normal faults as a result of post orogenic collapse. In the Pliocene and Pleistocene time the basin is a part of the back arc basin, which developed behind the Hellenic Arc. WNW trending normal faults and reactivated faults characterized this tectonic phase.


Lethaia ◽  
2021 ◽  
Author(s):  
Magdy El Hedeny ◽  
Andrej Ernest ◽  
Ahmed El‐Sabbagh ◽  
Mohammed Rashwan ◽  
Saleh Al Farraj ◽  
...  

Solid Earth ◽  
2015 ◽  
Vol 6 (1) ◽  
pp. 285-302 ◽  
Author(s):  
F. L. Schenker ◽  
M. G. Fellin ◽  
J.-P. Burg

Abstract. The Pelagonian zone, situated between the External Hellenides/Cyclades to the west and the Axios/Vardar/Almopias zone (AVAZ) and the Rhodope to the east, was involved in late Early Cretaceous and in Late Cretaceous–Eocene orogenic events whose duration and extent are still controversial. This paper constrains their late thermal imprints. New and previously published zircon (ZFT) and apatite (AFT) fission-track ages show cooling below 240 °C of the metamorphic western AVAZ imbricates between 102 and 93–90 Ma, of northern Pelagonia between 86 and 68 Ma, of the eastern AVAZ at 80 Ma and of the western Rhodope at 72 Ma. At the regional scale, this heterogeneous cooling is coeval with subsidence of Late Cretaceous marine basin(s) that unconformably covered the Early Cretaceous (130–110 Ma) thrust system from 100 Ma. Thrusting resumed at 70 Ma in the AVAZ and migrated across Pelagonia to reach the External Hellenides at 40–38 Ma. Renewed thrusting in Pelagonia is attested at 68 Ma by abrupt and rapid cooling below 240 °C and erosion of the gneissic rocks. ZFT and AFT in western and eastern Pelagonia, respectively, testify at ~40 Ma to the latest thermal imprint related to thrusting. Central-eastern Pelagonia cooled rapidly and uniformly from 240 to 80 °C between 24 and 16 Ma in the footwall of a major extensional fault. Extension started even earlier, at ~33 Ma in the western AVAZ. Post-7 Ma rapid cooling is inferred from inverse modeling of AFT lengths. It occurred while E–W normal faults were cutting Pliocene-to-recent sediment.


Geochemistry ◽  
2018 ◽  
Vol 78 (3) ◽  
pp. 340-355 ◽  
Author(s):  
Seyyedeh Halimeh Hashemi Azizi ◽  
Payman Rezaee ◽  
Mahdi Jafarzadeh ◽  
Guido Meinhold ◽  
Seyyed Reza Moussavi Harami ◽  
...  

2019 ◽  
Vol 67 ◽  
pp. 33-45 ◽  
Author(s):  
Xiao-Ming Zhang ◽  
Wen-Liang Xu ◽  
Chen-Yang Sun ◽  
Feng Wang ◽  
De-Bin Yang

Sign in / Sign up

Export Citation Format

Share Document