Seismic and lithofacies characterization of a gravity core transect down the submarine Tuaheni Landslide Complex, NE New Zealand

2018 ◽  
Vol 477 (1) ◽  
pp. 479-495 ◽  
Author(s):  
Jannis Kuhlmann ◽  
Alan R. Orpin ◽  
Joshu J. Mountjoy ◽  
Gareth J. Crutchley ◽  
Stuart Henrys ◽  
...  

AbstractThe southern Tuaheni Landslide Complex (TLC) at the Hikurangi subduction margin displays distinctive morphological features along its distribution over the Tuaheni slope offshore Gisborne, New Zealand. We here present first analyses of a gravity core transect that systematically samples surficial sediments from the source area to the toe of this landslide complex, thus providing important new insight into shallow lithological variation in the slide complex. Geophysical and geochemical core logs and core descriptions form the basis for a characterization of representative sediment successions that are indicative of the respective slope segment of recovery. Our results show that the lithology of surficial sediments varies significantly along the length of the landslide complex. Depending on the slope segment observed, this variation includes post-Last Glacial Maximum (LGM) outer-shelf sediments, and hemipelagic drape and near-surface reworked debris avalanche deposits, as well as multiple intercalated thinner turbidites and tephra layers at the distal end of the profile. Lithological downslope variability suggests ongoing mass transport events through the late Holocene that were likely to have been limited to small mud-turbidite flows. Integration with acoustic sub-bottom imagery reveals the presence of multiple stacked mass-transport deposits at depth, contrasting with previous interpretations of a single parent failure.

1986 ◽  
Vol 74 ◽  
Author(s):  
A. P. Jardine ◽  
S. Mitra Mukhopadhyay ◽  
J. M. Blakely

AbstractMg ion-implantation of A12O3 wafers followed by air annealing at high temperatures was investigated as a way to provide bulk doped samples for studies of Mg surface segregation and its effect on surface mass transport. SIMS was used to analyse Mg concentrations in implanted and unimplanted near-surface regions and in the bulk. It was found that the concentration of Mg decreases dramatically with depth from both surfaces of an annealed wafer and is also observed in the bulk. These observations are attributed to bulk diffusion of the Mg combined with equilibrium surface segregation. Surface mass transport associated with the (1120) surface of an A12 O3 single crystal wafer doped and equilibrated by such a method was studied by the grating decay method; the Mg doped sample showed a decay rate in air higher than that in the undoped wafer by a factor of ∼ 2.4 at 1500°C.


Sedimentology ◽  
2020 ◽  
Vol 67 (4) ◽  
pp. 2111-2148 ◽  
Author(s):  
Sebastian Cardona ◽  
Lesli J. Wood ◽  
Brandon Dugan ◽  
Zane Jobe ◽  
Lorna J. Strachan

Geophysics ◽  
2002 ◽  
Vol 67 (4) ◽  
pp. 1148-1158 ◽  
Author(s):  
George A. McMechan ◽  
Robert G. Loucks ◽  
Paul Mescher ◽  
Xiaoxian Zeng

The three‐dimensional architecture, spatial complexity, and pore‐type distribution are mapped in a near‐surface analog of a coalesced, collapsed paleocave system in the Lower Ordovician Ellenburger Group near the city of Marble Falls in central Texas. The surface area of the site has dimensions of about 350 × 1000 m. The data collected include about 12 km of 50‐MHz ground‐penetrating radar (GPR) data arranged in a grid of orthogonal lines, 29 cores of about 15‐m length, and detailed facies maps of an adjacent quarry face. Electrical property measurements along with detailed core descriptions were the basis of integrated interpretation of the GPR data. Three main GPR facies are defined on the basis of degree of brecciation in the corresponding cores: undisturbed host rock, disturbed host rock, and paleocave breccia. This GPR facies division defined the major paleocave trends and the distribution of porosity types, which correlate with reservoir quality. Highly brecciated zones are separated by disturbed and undisturbed host rock. The breccia bodies that outline the trend of collapsed cave passages are up to 300 m wide; the intervening intact areas between breccias are up to 200 m wide. Understanding the breccia distribution in a reservoir analog will help in defining strategies for efficient development of coalesced, collapsed paleocave reservoirs.


Author(s):  
Julia T. Luck ◽  
C. W. Boggs ◽  
S. J. Pennycook

The use of cross-sectional Transmission Electron Microscopy (TEM) has become invaluable for the characterization of the near-surface regions of semiconductors following ion-implantation and/or transient thermal processing. A fast and reliable technique is required which produces a large thin region while preserving the original sample surface. New analytical techniques, particularly the direct imaging of dopant distributions, also require good thickness uniformity. Two methods of ion milling are commonly used, and are compared below. The older method involves milling with a single gun from each side in turn, whereas a newer method uses two guns to mill from both sides simultaneously.


2003 ◽  
Vol 800 ◽  
Author(s):  
Brady J. Clapsaddle ◽  
Lihua Zhao ◽  
Alex E. Gash ◽  
Joe H. Satcher ◽  
Kenneth J. Shea ◽  
...  

ABSTRACTIn the field of composite energetic materials, properties such as ingredient distribution, particle size, and morphology, affect both sensitivity and performance. Since the reaction kinetics of composite energetic materials are typically controlled by the mass transport rates between reactants, one would anticipate new and potentially exceptional performance from energetic nanocomposites. We have developed a new method of making nanostructured energetic materials, specifically explosives, propellants, and pyrotechnics, using sol-gel chemistry. A novel sol-gel approach has proven successful in preparing metal oxide/silicon oxide nanocomposites in which the metal oxide is the major component. Two of the metal oxides are tungsten trioxide and iron(III) oxide, both of which are of interest in the field of energetic materials. Furthermore, due to the large availability of organically functionalized silanes, the silicon oxide phase can be used as a unique way of introducing organic additives into the bulk metal oxide materials. As a result, the desired organic functionality is well dispersed throughout the composite material on the nanoscale. By introducing a fuel metal into the metal oxide/silicon oxide matrix, energetic materials based on thermite reactions can be fabricated. The resulting nanoscale distribution of all the ingredients displays energetic properties not seen in its microscale counterparts due to the expected increase of mass transport rates between the reactants. The synthesis and characterization of these metal oxide/silicon oxide nanocomposites and their performance as energetic materials will be discussed.


2021 ◽  
Author(s):  
◽  
Grace Elizabeth Frontin-Rollet

<p>The New Zealand offshore seabed hosts diverse resources including phosphate rich rocks. Phosphate rock deposits on the Chatham Rise have been the focus of previous investigations into their composition and mining potential; however, the diversity of the geochemistry of phosphate deposits, including their wider distribution beyond the Chatham Rise, their trace metal budget, and potential for ecotoxicity, remain poorly characterised. This study addresses some of these gaps by presenting a geochemical investigation, including trace metals, for a range of phosphate nodules from across the Chatham Rise, Bollons Seamount and offshore southeastern South Island. Elutriate and reconnaissance bioaccumulation experiments provide insights into the potential for ecotoxic trace metal release and effects on biota should sediment disturbance through mining activities occur.  The bulk chemistry of Bollons Seamount phosphorite nodules have been characterised for the first time, and show significant enrichment in first row transition metals; Co, Ni, Cu, Zn, in addition to Sr, Y, Mo, U, MnO, CaO and P2O5, and depletion in TiO2, Al2O3, MgO, K2O, FeO, SiO2, Sc, Cr, Ga, Rb, Cs, Hf, and Th relative to average upper continental crust. The cores of these nodules are dominated by apatite, quartz and anorthoclase phases, which are cross cut by Mn rich dendrites. The abundant presence of these minerals results in the significant differences in chemistry observed relative to Chatham Rise phosphorite nodules. The nodules also contain a secondary authigenic apatite phase, with a Mn crust rim. Significant rare earth element enrichment (REE) is most likely due to efficient scavenging by the Mn crust, resulting in seawater REE patterns characterised by negative Ce and Eu anomalies and heavy rare earth element enrichment.  The bulk geochemistry of the Chatham Rise and offshore South Island phosphorite nodules is characterised by enrichment in CaO, P2O5, Sr, U, Y, Mo and depletion in TiO2, Al2O3, MnO, MgO, FeO, K2O, Sc, Cr, Cu, Ga, Rb, Cs, Ba, Hf, Ta, Pb and Th relative to average upper continental crust. The low concentrations of Cd in Chatham Rise, offshore South Island, and Bollons Seamount phosphorites make them potentially suitable sources for direct application fertilizers.  The New Zealand marine phosphorite nodule deposits formed by repeated cycles of erosive bottom currents and phosphogenesis, resulting in the winnowing and concentration of the deposits. The iron pump model is proposed as a mechanism for the formation of apatite and associated mineral phases, giving the nodules their characteristic concentric zoning. The migration of the nodules through the oxic, suboxic, and anoxic zones of the sediment profile led to the formation of glaucony, apatite (suboxic zone), goethite (oxic zone), and pyrite with associated U enriched (anoxic zone) minerals. Rare earth elements (REE) in the Chatham Rise phosphorite nodules are associated with the glaucony rim minerals, and indicate that since the formation of the rims, very little diagenesis has occurred, preserving seawater REE patterns characterised by negative Ce and Eu anomalies and heavy REE enrichment. Site specific enrichments in trace elements Ba, V, Co, Ni, Cu, Zn, Y, Cd and Pb are attributed to either differences in incorporation of material into precursor carbonate e.g. volcanic materials, or higher fluxes of organic matter, delivering high concentrations of essential metals from biota, especially Cu and Zn.  Direct pore water measurements from surficial sediment of the Chatham Rise show high concentrations of dissolved Fe and Mn, along with Cu, indicating suboxic conditions. High Cu concentrations measured in sediment pore water suggest that Cu release requires monitoring should seafloor surficial sediments on the Chatham Rise be disturbed. However, the elutriate experiments were not able to resolve if Cu release by sediment disturbance would exceed Australian and New Zealand Environment Conservation Council (2000) environmental guideline trigger values.  The surrogate amphipod species Chaetocorophium c.f. lucasi shows promise as a biomonitor for disturbed marine sediments. Elements enriched in surficial sediments and phosphorite nodules, Hg, Pb, Fe, U and V, were not observed to bioaccumulate. Site specific differences in chemistry were observed, specifically in the different total relative bioaccumulation of Mo between amphipods exposed to sediments from two different sites. This suggests that future monitoring of chemical release during marine sediment disturbance requires the full geochemical characterisation of the substrate. Furthermore, fresh sediment and deep water should be used for future elutriate experiments, as storage of material by freeze-thawing and/or refrigeration causes mobilisation of some key trace metals such as U, V, Mo, Mn.</p>


Sign in / Sign up

Export Citation Format

Share Document