Optimal space distributed move-to-front lists

Author(s):  
Michael Saks ◽  
Fotios Zaharoglou
Keyword(s):  
2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Kyungchan Lee ◽  
Gunnar F. Lange ◽  
Lin-Lin Wang ◽  
Brinda Kuthanazhi ◽  
Thaís V. Trevisan ◽  
...  

AbstractTime reversal symmetric (TRS) invariant topological insulators (TIs) fullfil a paradigmatic role in the field of topological materials, standing at the origin of its development. Apart from TRS protected strong TIs, it was realized early on that more confounding weak topological insulators (WTI) exist. WTIs depend on translational symmetry and exhibit topological surface states only in certain directions making it significantly more difficult to match the experimental success of strong TIs. We here report on the discovery of a WTI state in RhBi2 that belongs to the optimal space group P$$\bar{1}$$ 1 ¯ , which is the only space group where symmetry indicated eigenvalues enumerate all possible invariants due to absence of additional constraining crystalline symmetries. Our ARPES, DFT calculations, and effective model reveal topological surface states with saddle points that are located in the vicinity of a Dirac point resulting in a van Hove singularity (VHS) along the (100) direction close to the Fermi energy (EF). Due to the combination of exotic features, this material offers great potential as a material platform for novel quantum effects.


Author(s):  
K. Chakrabarty ◽  
B.T. Murray ◽  
J.P. Hayes
Keyword(s):  

2011 ◽  
Vol 30 (7) ◽  
pp. 1911-1919 ◽  
Author(s):  
Yonghao Yue ◽  
Kei Iwasaki ◽  
Bing-Yu Chen ◽  
Yoshinori Dobashi ◽  
Tomoyuki Nishita

2015 ◽  
Vol 713-715 ◽  
pp. 2106-2109
Author(s):  
Mauricio Mauledoux ◽  
Edilberto Mejía-Ruda ◽  
Oscar I. Caldas

The work is devoted to solve allocation task problem in multi agents systems using multi-objective genetic algorithms and comparing the technique with methods used in game theories. The paper shows the main advantages of genetic algorithms and the way to apply a parallel approach dividing the population in sub-populations saving time in the search and expanding the coverage of the solution in the Pareto optimal space.


2020 ◽  
Vol 306 ◽  
pp. 04007
Author(s):  
Qianni Li ◽  
Aide Xu ◽  
Chaoyi Shang ◽  
Lepeng Huang

This paper proposes a novel deadbeat torque and flux control (DB-DTFC) to reduce torque ripple for switched reluctance motor (SRM). DB-DTFC combines the advantages of direct torque control (DTC) and space-vector modulation (SVM). DB-DTFC leads current vector control into DTC in order to find the equation between torque and current through deadbeat prediction theory i.e. a beat reaches a given point. In addition, the deadbeat calculation module here is similar to that of permanent magnet synchronous motor. Based on dq0 reference frame of SRM, the most suitable dq0 axis current of next moment corresponding to different torque errors is calculated and predicted. According to the calculated dq0 axis current, the optimal space voltage vectors can be selected to reduce torque ripple. In order to verify the effectiveness and correctness of the proposed scheme, DB-DTFC is verified and compared with the DTC-SVM by simulation.


Sign in / Sign up

Export Citation Format

Share Document