A distributed host-based worm detection system

Author(s):  
Senthilkumar G. Cheetancheri ◽  
John Mark Agosta ◽  
Denver H. Dash ◽  
Karl N. Levitt ◽  
Jeff Rowe ◽  
...  
IEEE Access ◽  
2020 ◽  
Vol 8 ◽  
pp. 205444-205454
Author(s):  
Hanxun Zhou ◽  
Yeshuai Hu ◽  
Xinlin Yang ◽  
Hong Pan ◽  
Wei Guo ◽  
...  

Author(s):  
Ali Khalid Hilool ◽  
Soukaena H. Hashem ◽  
Shatha H. Jafer

<p>Due to their rapid spread, computer worms perform harmful tasks in networks, posing a security risk; however, existing worm detection algorithms continue to struggle to achieve good performance and the reasons for that are: First, a large amount of irrelevant data affects classification accuracy. Second, individual classifiers do not detect all types of worms effectively. Third, many systems are based on outdated data, making them unsuitable for new worm species. The goal of the study is to use data mining algorithms to detect worms in the network because they have a high ability to detect new types accurately. The proposal is based on the UNSW NB15 dataset and uses a support vector machine to train and test the ensemble bagging algorithm. To detect various types of worms efficiently, the contribution suggests combining correlation and Chi2 feature selection method called Chi2-Corr to select relevant features and using support vector machine (SVM) in the bagging algorithm. The system achieved accuracy reaching 0.998 with Chi2-Corr, and 0.989, 0.992 with correlation and chi-square separately.</p>


Author(s):  
Hongyan Wang ◽  
Xiaoguang Tang ◽  
Cheng Zhuang ◽  
Changqin Fu

2010 ◽  
Vol 21 (4) ◽  
pp. 816-826
Author(s):  
Zheng HONG ◽  
Li-Fa WU

Author(s):  
J. B. Warren

Electron diffraction intensity profiles have been used extensively in studies of polycrystalline and amorphous thin films. In previous work, diffraction intensity profiles were quantitized either by mechanically scanning the photographic emulsion with a densitometer or by using deflection coils to scan the diffraction pattern over a stationary detector. Such methods tend to be slow, and the intensities must still be converted from analog to digital form for quantitative analysis. The Instrumentation Division at Brookhaven has designed and constructed a electron diffractometer, based on a silicon photodiode array, that overcomes these disadvantages. The instrument is compact (Fig. 1), can be used with any unmodified electron microscope, and acquires the data in a form immediately accessible by microcomputer.Major components include a RETICON 1024 element photodiode array for the de tector, an Analog Devices MAS-1202 analog digital converter and a Digital Equipment LSI 11/2 microcomputer. The photodiode array cannot detect high energy electrons without damage so an f/1.4 lens is used to focus the phosphor screen image of the diffraction pattern on to the photodiode array.


Author(s):  
P. Trebbia ◽  
P. Ballongue ◽  
C. Colliex

An effective use of electron energy loss spectroscopy for chemical characterization of selected areas in the electron microscope can only be achieved with the development of quantitative measurements capabilities.The experimental assembly, which is sketched in Fig.l, has therefore been carried out. It comprises four main elements.The analytical transmission electron microscope is a conventional microscope fitted with a Castaing and Henry dispersive unit (magnetic prism and electrostatic mirror). Recent modifications include the improvement of the vacuum in the specimen chamber (below 10-6 torr) and the adaptation of a new electrostatic mirror.The detection system, similar to the one described by Hermann et al (1), is located in a separate chamber below the fluorescent screen which visualizes the energy loss spectrum. Variable apertures select the electrons, which have lost an energy AE within an energy window smaller than 1 eV, in front of a surface barrier solid state detector RTC BPY 52 100 S.Q. The saw tooth signal delivered by a charge sensitive preamplifier (decay time of 5.10-5 S) is amplified, shaped into a gaussian profile through an active filter and counted by a single channel analyser.


Sign in / Sign up

Export Citation Format

Share Document