Analysis of electron-diffraction intensity profiles using a photodiode-array detection system

Author(s):  
J. B. Warren

Electron diffraction intensity profiles have been used extensively in studies of polycrystalline and amorphous thin films. In previous work, diffraction intensity profiles were quantitized either by mechanically scanning the photographic emulsion with a densitometer or by using deflection coils to scan the diffraction pattern over a stationary detector. Such methods tend to be slow, and the intensities must still be converted from analog to digital form for quantitative analysis. The Instrumentation Division at Brookhaven has designed and constructed a electron diffractometer, based on a silicon photodiode array, that overcomes these disadvantages. The instrument is compact (Fig. 1), can be used with any unmodified electron microscope, and acquires the data in a form immediately accessible by microcomputer.Major components include a RETICON 1024 element photodiode array for the de tector, an Analog Devices MAS-1202 analog digital converter and a Digital Equipment LSI 11/2 microcomputer. The photodiode array cannot detect high energy electrons without damage so an f/1.4 lens is used to focus the phosphor screen image of the diffraction pattern on to the photodiode array.

1991 ◽  
Vol 222 ◽  
Author(s):  
Masaki Kanai ◽  
Tomoji Kawai ◽  
Takuya Matsumoto ◽  
Shichio Kawai

ABSTRACTThin films of (Ca,Sr)CuO2 and Bi2Sr2Can-1CunO2n+4 are formed by laser molecular beam epitaxy with in-situ reflection high energy electron diffraction observation. The diffraction pattern shows that these materials are formed with layer-by-layer growth. The change of the diffraction intensity as well as the analysis of the total diffraction pattern makes It possible to control the grown of the atomic layer or the unit-cell layer.


1996 ◽  
Vol 35 (Part 2, No. 3B) ◽  
pp. L366-L369 ◽  
Author(s):  
Hyun-Chul Ko ◽  
Shigeo Yamaguchi ◽  
Hitoshi Kurusu ◽  
Yoichi Kawakami ◽  
Shizuo Fujita ◽  
...  

1995 ◽  
Vol 399 ◽  
Author(s):  
G. Teichert ◽  
J. Pezoldt ◽  
V. Cimalla ◽  
O. Nennewitz ◽  
L. Spiess

ABSTRACTRHEED pattern of SiC layers on both (100) and (111)Si grown by carbonization were studied. Different deviations from the single crystalline structure were found ranging from twinning up to changes in the orientation and textured growth. Special attention was drawn on lattice relaxation and morphology evolution during the growth of the formed SiC. Relationships between the occurrence of typical RHEED pattern and the morphology and process parameters are presented.


Sign in / Sign up

Export Citation Format

Share Document