An architectural transformation program for optimization of digital systems by multi-level decomposition

Author(s):  
Abhijit Chatterjee ◽  
Rabindra K. Roy
Author(s):  
Raimund Ubar ◽  
Jaan Raik ◽  
Artur Jutman ◽  
Maksim Jenihhin

In order to cope with the complexity of today’s digital systems in diagnostic modeling, hierarchical multi-level approaches should be used. In this chapter, the possibilities of using Decision Diagrams (DD) for uniform diagnostic modeling of digital systems at different levels of abstraction are discussed. DDs can be used for modeling the functions and faults of systems at logic, register transfer and behavior like instruction set architecture levels. The authors differentiate two general types of DDs – logic level binary DDs (BDD) and high level DDs (HLDD). Special classes of BDDs are described: structurally synthesized BDDs (SSBDD) and structurally synthesized BDDs with multiple inputs (SSMIBDD). A method of iterative synthesis of SSBDDs and SSMIBDDs is discussed. Three methods for synthesis of HLDDs for representing digital systems at higher levels are described: iterative superposition of HLDDs for high-level structural representations of systems, symbolic execution of procedural descriptions for functional representations of systems, and creation of vector HLDDs (VHLDD) on the basis of using shared HLDDs for compact representing of a given set of high level functions. The nodes in DDs can be modeled as generic locations of faults. For more precise general specification of faults different logic constraints are used. A functional fault model to map the low level faults to higher levels, particularly, to map physical defects from transistor level to logic level is discussed.


Electronics ◽  
2020 ◽  
Vol 9 (11) ◽  
pp. 1859
Author(s):  
Alexander Barkalov ◽  
Larysa Titarenko ◽  
Kazimierz Krzywicki ◽  
Svetlana Saburova

Contemporary digital systems include many varying sequential blocks. In the article, we discuss a case when Mealy finite state machines (FSMs) describe the behavior of sequential blocks. In many cases, the performance is the most important characteristic of an FSM circuit. In the article, we propose a method which allows increasing the operating frequency of multi-level look-up table (LUT)-based Mealy FSMs. The main idea of the proposed approach is to use together two methods of structural decomposition. They are: (1) the known method of transformation of codes of collections of outputs into FSM state codes and (2) a new method of extension of state codes. The proposed approach allows producing FPGA-based FSMs having three levels of logic combined through the system of regular interconnections. Each function for every level of logic was implemented using a single LUT. An example of the synthesis of Mealy FSM with the proposed architecture is shown. The effectiveness of the proposed method was confirmed by the results of experimental studies based on standard benchmark FSMs. The research results show that FSM circuits based on the proposed approach have a higher operating frequency than can be obtained using other investigated methods. The maximum operating frequency is improved by an average of 3.18 to 12.57 percent. These improvements are accompanied by a small growth of LUT count.


2013 ◽  
pp. 407-433
Author(s):  
Raimund Ubar ◽  
Jaan Raik ◽  
Artur Jutman ◽  
Maksim Jenihhin

In order to cope with the complexity of today’s digital systems in diagnostic modeling, hierarchical multi-level approaches should be used. In this chapter, the possibilities of using Decision Diagrams (DD) for uniform diagnostic modeling of digital systems at different levels of abstraction are discussed. DDs can be used for modeling the functions and faults of systems at logic, register transfer and behavior like instruction set architecture levels. The authors differentiate two general types of DDs – logic level binary DDs (BDD) and high level DDs (HLDD). Special classes of BDDs are described: structurally synthesized BDDs (SSBDD) and structurally synthesized BDDs with multiple inputs (SSMIBDD). A method of iterative synthesis of SSBDDs and SSMIBDDs is discussed. Three methods for synthesis of HLDDs for representing digital systems at higher levels are described: iterative superposition of HLDDs for high-level structural representations of systems, symbolic execution of procedural descriptions for functional representations of systems, and creation of vector HLDDs (VHLDD) on the basis of using shared HLDDs for compact representing of a given set of high level functions. The nodes in DDs can be modeled as generic locations of faults. For more precise general specification of faults different logic constraints are used. A functional fault model to map the low level faults to higher levels, particularly, to map physical defects from transistor level to logic level is discussed.


Author(s):  
T. A. Dodson ◽  
E. Völkl ◽  
L. F. Allard ◽  
T. A. Nolan

The process of moving to a fully digital microscopy laboratory requires changes in instrumentation, computing hardware, computing software, data storage systems, and data networks, as well as in the operating procedures of each facility. Moving from analog to digital systems in the microscopy laboratory is similar to the instrumentation projects being undertaken in many scientific labs. A central problem of any of these projects is to create the best combination of hardware and software to effectively control the parameters of data collection and then to actually acquire data from the instrument. This problem is particularly acute for the microscopist who wishes to "digitize" the operation of a transmission or scanning electron microscope. Although the basic physics of each type of instrument and the type of data (images & spectra) generated by each are very similar, each manufacturer approaches automation differently. The communications interfaces vary as well as the command language used to control the instrument.


Author(s):  
N. K. Jha ◽  
S. Gupta
Keyword(s):  

Author(s):  
Ferdinand Keller ◽  
Tatjana Stadnitski ◽  
Jakob Nützel ◽  
Renate Schepker
Keyword(s):  

Zusammenfassung. Fragestellung: Über Veränderungen in der emotionalen Befindlichkeit von Jugendlichen während einer Suchttherapie ist wenig bekannt. Methode: Die Jugendlichen füllten wöchentlich einen entsprechenden Fragebogen aus, analog ihre Bezugsbetreuer eine parallelisierte Kurzfassung. Von 42 Jugendlichen liegen insgesamt 853 Bogen und von den Bezugsbetreuern 708 Bogen vor. Die Fragebogen wurden zunächst faktorenanalytisch hinsichtlich ihrer Dimensionalität ausgewertet, anschließend wurden gruppenbezogene Verlaufsanalysen (Multi-Level-Modelle) und Abhängigkeitsanalysen auf Einzelfallebene (Zeitreihenanalysen) durchgeführt. Ergebnisse: Im Jugendlichenfragebogen ergaben sich vier Faktoren: negative Befindlichkeit, Wertschätzung von Therapie/Betreuung, Motivation und Suchtdynamik. Die Übereinstimmung zwischen den Jugendlichen- und der (einfaktoriellen) Betreuereinschätzung fiel insgesamt niedrig bis mäßig aus, brachte aber auf Einzelfallebene differenziertere Ergebnisse. Im Verlauf nahmen die Werte auf allen vier Jugendlichenskalen ab. Einzig der Verlauf der Wertschätzung in der Eingewöhnungsphase war prädiktiv für den späteren Abbruch der Maßnahme: Bei den Abbrechern nahm die Wertschätzung ab, während sie bei den Beendern initial stieg. Schlussfolgerungen: Der bedeutsamste Faktor in Bezug auf die Therapiebeendigung suchtkranker Jugendlicher scheint die Wertschätzung von Therapie/Betreuung zu sein, während die Motivation jugendtypische Schwankungen aufweist. Der Suchtdynamik kam eine deutlich weniger bedeutende Rolle zu als allgemein angenommen. Programme in der Langzeittherapie sollten die Wertschätzung von Therapie/Betreuung künftig mehr fokussieren als die Suchtdynamik.


2017 ◽  
Author(s):  
Todd D. Smith ◽  
Mari-Amanda Dyal ◽  
Yongjia Pu ◽  
Stephanie Dickinson ◽  
David M. DeJoy

Sign in / Sign up

Export Citation Format

Share Document