Optimization of density functional tight-binding and classical reactive molecular dynamics for high-throughput simulations of carbon materials

Author(s):  
Jacek Jakowski ◽  
Bilel Hadri ◽  
Steven J. Stuart ◽  
Predrag Krstic ◽  
Stephan Irle ◽  
...  
Author(s):  
Adrian Dominguez-Castro ◽  
Thomas Frauenheim

Theoretical calculations are an effective strategy to comple- ment and understand experimental results in atomistic detail. Ehrenfest molecular dynamics simulations based on the real-time time-dependent density functional tight-binding (RT-TDDFTB) approach...


1995 ◽  
Vol 383 ◽  
Author(s):  
G. Jungnickel ◽  
D. Porezag ◽  
Th. Frauenheim ◽  
W. R. L. Lambrecht ◽  
B. Segall ◽  
...  

ABSTRACTThe reconstruction of the diamond {1111} surface is re-examined by means of density functional theory based tight-binding molecular dynamics. Evidence is found for competition between a graphitizing tendency leading to an unreconstructed but relaxed 1 × 1 surface and a π-bonded chain-like 2 × 1 reconstruction. The implications of the possible co-existence of these two distinct surface phases for diamond growth are discussed.


2019 ◽  
Vol 97 (11) ◽  
pp. 795-804 ◽  
Author(s):  
Dong Xiang ◽  
Weihua Zhu

The density functional tight-binding molecular dynamics approach was used to study the mechanisms and kinetics of initial pyrolysis and combustion reactions of isolated and multi-molecular FOX-7. Based on the thermal cleavage of bridge bonds, the pyrolysis process of FOX-7 can be divided into three stages. However, the combustion process can be divided into five decomposition stages, which is much more complex than the pyrolysis reactions. The vibrations in the mean temperature contain nodes signifying the formation of new products and thereby the transitions between the various stages in the pyrolysis and combustion processes. Activation energy and pre-exponential factor for the pyrolysis and combustion reactions of FOX-7 were obtained from the kinetic analysis. It is found that the activation energy of its pyrolysis and combustion reactions are very low, making both take place fast. Our simulations provide the first atomic-level look at the full dynamics of the complicated pyrolysis and combustion process of FOX-7.


2021 ◽  
Author(s):  
Sayan Maity ◽  
Vangelis Daskalakis ◽  
Marcus Elstner ◽  
Ulrich Kleinekathöfer

Photosynthetic processes are driven by sunlight. Too little of it and the photosynthetic machinery cannot produce the reductive power to drive the anabolic pathways. Too much sunlight and the machinery can get damaged. In higher plants, the major Light Harvesting Complex (LHCII) efficiently absorbs the light energy, but can also dissipate it when in excess (quenching). In order to study the dynamics related to the quenching process but also the exciton dynamics in general, one needs to accurately determine the so-called spectral density which describes the coupling between the relevant pigment modes and the environmental degrees of freedom. To this end, Born–Oppenheimer molecular dynamics simulations in a quantum mechanics/molecular mechanics (QM/MM) fashion utilizing the density functional based tight binding (DFTB) method have been performed for the ground state dynamics. Subsequently, the time-dependent extension of the long-range-corrected DFTB scheme has been employed for the excited state calculations of the individual chlorophyll-a molecules in the LHCII complex. The analysis of this data resulted in spectral densities showing an astonishing agreement with the experimental counterpart in this rather large system. This consistency with an experimental observable also supports the accuracy, robustness, and reliability of the present multi-scale scheme. In addition, the resulting spectral densities and site energies were used to determine the exciton transfer rate within a special pigment pair consisting of a chlorophyll-a and a carotenoid molecule which is assumed to play a role in the balance between the light harvesting and quenching modes.


2015 ◽  
Vol 1756 ◽  
Author(s):  
Priya Vashishta ◽  
Rajiv K. Kalia ◽  
Aiichiro Nakano ◽  
Ying Li ◽  
Ken-ichi Nomura ◽  
...  

ABSTRACTMultimillion-atom reactive molecular dynamics (RMD) and large quantum molecular dynamics (QMD) simulations are used to investigate structural and dynamical correlations under highly nonequilibrium conditions and reactive processes in nanostructured materials under extreme conditions. This paper discusses four simulations:1.RMD simulations of heated aluminum nanoparticles have been performed to study the fast oxidation reaction processes of the core (aluminum)-shell (alumina) nanoparticles and small complexes.2.Cavitation bubbles readily occur in fluids subjected to rapid changes in pressure. We have used billion-atom RMD simulations on a 163,840-processor Blue Gene/P supercomputer to investigate chemical and mechanical damages caused by shock-induced collapse of nanobubbles in water near silica surface. Collapse of an empty nanobubble generates high-speed nanojet, resulting in the formation of a pit on the surface. The gas-filled bubbles undergo partial collapse and consequently the damage on the silica surface is mitigated.3.Our QMD simulation reveals rapid hydrogen production from water by an Al superatom. We have found a low activation-barrier mechanism, in which a pair of Lewis acid and base sites on the Aln surface preferentially catalyzes hydrogen production.4.We have introduced an extension of the divide-and-conquer (DC) algorithmic paradigm called divide-conquer-recombine (DCR) to perform large QMD simulations on massively parallel supercomputers, in which interatomic forces are computed quantum mechanically in the framework of density functional theory (DFT). A benchmark test on an IBM Blue Gene/Q computer exhibits an isogranular parallel efficiency of 0.984 on 786,432 cores for a 50.3 million-atom SiC system. As a test of production runs, LDC-DFT-based QMD simulation involving 16,661 atoms was performed on the Blue Gene/Q to study on-demand production of hydrogen gas from water using LiAl alloy particles.


Sign in / Sign up

Export Citation Format

Share Document