Reactive Molecular Dynamics Simulations, Data Analytics and Visualization

2015 ◽  
Vol 1756 ◽  
Author(s):  
Priya Vashishta ◽  
Rajiv K. Kalia ◽  
Aiichiro Nakano ◽  
Ying Li ◽  
Ken-ichi Nomura ◽  
...  

ABSTRACTMultimillion-atom reactive molecular dynamics (RMD) and large quantum molecular dynamics (QMD) simulations are used to investigate structural and dynamical correlations under highly nonequilibrium conditions and reactive processes in nanostructured materials under extreme conditions. This paper discusses four simulations:1.RMD simulations of heated aluminum nanoparticles have been performed to study the fast oxidation reaction processes of the core (aluminum)-shell (alumina) nanoparticles and small complexes.2.Cavitation bubbles readily occur in fluids subjected to rapid changes in pressure. We have used billion-atom RMD simulations on a 163,840-processor Blue Gene/P supercomputer to investigate chemical and mechanical damages caused by shock-induced collapse of nanobubbles in water near silica surface. Collapse of an empty nanobubble generates high-speed nanojet, resulting in the formation of a pit on the surface. The gas-filled bubbles undergo partial collapse and consequently the damage on the silica surface is mitigated.3.Our QMD simulation reveals rapid hydrogen production from water by an Al superatom. We have found a low activation-barrier mechanism, in which a pair of Lewis acid and base sites on the Aln surface preferentially catalyzes hydrogen production.4.We have introduced an extension of the divide-and-conquer (DC) algorithmic paradigm called divide-conquer-recombine (DCR) to perform large QMD simulations on massively parallel supercomputers, in which interatomic forces are computed quantum mechanically in the framework of density functional theory (DFT). A benchmark test on an IBM Blue Gene/Q computer exhibits an isogranular parallel efficiency of 0.984 on 786,432 cores for a 50.3 million-atom SiC system. As a test of production runs, LDC-DFT-based QMD simulation involving 16,661 atoms was performed on the Blue Gene/Q to study on-demand production of hydrogen gas from water using LiAl alloy particles.

Catalysts ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 891
Author(s):  
Ken-ichi Fujita ◽  
Takayoshi Inoue ◽  
Toshiki Tanaka ◽  
Jaeyoung Jeong ◽  
Shohichi Furukawa ◽  
...  

A new catalytic system has been developed for hydrogen production from various monosaccharides, mainly glucose, as a starting material under reflux conditions in water in the presence of a water-soluble dicationic iridium complex bearing a functional bipyridine ligand. For example, the reaction of D-glucose in water under reflux for 20 h in the presence of [Cp*Ir(6,6′-dihydroxy-2,2′-bipyridine)(H2O)][OTf]2 (1.0 mol %) (Cp*: pentamethylcyclopentadienyl, OTf: trifluoromethanesulfonate) resulted in the production of hydrogen gas in 95% yield. In the present catalytic reaction, it was experimentally suggested that dehydrogenation of the alcoholic moiety at 1-position of glucose proceeded.


Materials ◽  
2020 ◽  
Vol 13 (1) ◽  
pp. 210 ◽  
Author(s):  
Dohun Kim ◽  
Dong-Kyu Lee ◽  
Seong Min Kim ◽  
Woosung Park ◽  
Uk Sim

In the development of hydrogen-based technology, a key challenge is the sustainable production of hydrogen in terms of energy consumption and environmental aspects. However, existing methods mainly rely on fossil fuels due to their cost efficiency, and as such, it is difficult to be completely independent of carbon-based technology. Electrochemical hydrogen production is essential, since it has shown the successful generation of hydrogen gas of high purity. Similarly, the photoelectrochemical (PEC) method is also appealing, as this method exhibits highly active and stable water splitting with the help of solar energy. In this article, we review recent developments in PEC water splitting, particularly those using metal-organic halide perovskite materials. We discuss the exceptional optical and electrical characteristics which often dictate PEC performance. We further extend our discussion to the material limit of perovskite under a hydrogen production environment, i.e., that PEC reactions often degrade the contact between the electrode and the electrolyte. Finally, we introduce recent improvements in the stability of a perovskite-based PEC device.


2021 ◽  
Author(s):  
Diwakar Kafle ◽  
Sushil Dumre ◽  
Saroj Tripathi ◽  
Shankar Shrestha

Abstract Hydrogen production by electrolysis of water is seen as a promising technique as it is environment friendly and it can use renewable energy source for the production of hydrogen gas. However, this technology has less than 4% contribution to the production of commercial hydrogen in the market. This is due to the high electricity consumption of the water splitting reaction. The main challenge to make this technology efficient and economically viable is to develop cost effective and highly efficient electrolyzer. Here we have developed a three electrode electrolyzer in which an extra electrode is inserted between conventional electrodes: cathode and anode. This novel electrolyzer utilizes an extra voltage source which reduces the overpotential and increases the anode current of the cell, which is responsible for the hydrogen production. Furthermore, we observed that, the operating resistance of the cell decreases under the application of the new voltage source. Our results demonstrate that the introduction of third electrode improves the performance of electrolysis by consuming less power as compared to the traditional or conventional two electrode electrolyzer system.


2013 ◽  
Vol 59 (2) ◽  
pp. 59-78 ◽  
Author(s):  
Yogesh Goyal ◽  
Manish Kumar ◽  
Kalyan Gayen

Hydrogen gas exhibits potential as a sustainable fuel for the future. Therefore, many attempts have been made with the aim of producing high yields of hydrogen gas through renewable biological routes. Engineering of strains to enhance the production of hydrogen gas has been an active area of research for the past 2 decades. This includes overexpression of hydrogen-producing genes (native and heterologous), knockout of competitive pathways, creation of a new productive pathway, and creation of dual systems. Interestingly, genetic mutations in 2 different strains of the same species may not yield similar results. Similarly, 2 different studies on hydrogen productivities may differ largely for the same mutation and on the same species. Consequently, here we analyzed the effect of various genetic modifications on several species, considering a wide range of published data on hydrogen biosynthesis. This article includes a comprehensive metabolic engineering analysis of hydrogen-producing organisms, namely Escherichia coli, Clostridium, and Enterobacter species, and in addition, a short discussion on thermophilic and halophilic organisms. Also, apart from single-culture utilization, dual systems of various organisms and associated developments have been discussed, which are considered potential future targets for economical hydrogen production. Additionally, an indirect contribution towards hydrogen production has been reviewed for associated species.


Sign in / Sign up

Export Citation Format

Share Document