Efficient High-Rate Secret Key Extraction in Wireless Sensor Networks Using Collaboration

2014 ◽  
Vol 11 (1) ◽  
pp. 1-32 ◽  
Author(s):  
Sriram Nandha Premnath ◽  
Jessica Croft ◽  
Neal Patwari ◽  
Sneha Kumar Kasera
Sensors ◽  
2018 ◽  
Vol 19 (1) ◽  
pp. 114 ◽  
Author(s):  
Dong Chen ◽  
Wei Lu ◽  
Weiwei Xing ◽  
Na Wang

With the wide application of wireless sensor networks (WSNs), secure data sharing in networks is becoming a hot research topic and attracting more and more attention. A huge challenge is securely transmitting the data from the source node to the sink node. Except for eavesdropping the information stored in the packages, the adversary may also attempt to analyze the contextual information of the network to locate the source node. In this paper, we proposed a secure data sharing approach to defend against the adversary. Specifically, we first design a secret key mechanism to guarantee the security of package delivery between a pair of nodes. Then, a light-weighted secret sharing scheme is designed to map the original message to a set of shares. Finally, the shares are delivered to the sink node independently based on a proper random routing algorithm. Simulation results illustrate that our approach can defend against the eavesdropping and tracing-back attack in an energy-efficient manner.


Sensors ◽  
2019 ◽  
Vol 19 (4) ◽  
pp. 914 ◽  
Author(s):  
Lukas Nemec ◽  
Vashek Matyas ◽  
Radim Ostadal ◽  
Petr Svenda ◽  
Pierre-Louis Palant

Wireless sensor networks with a large number of cheap low-power interconnected devices bring up challenging tasks when considering the security of their communications. In our previous work, we presented two approaches for the design of dynamic protocols for link key (re-)establishment in ad hoc networks, using two elements studied earlier—secrecy amplification and key extraction from radio channel fading. The goal of this article is to provide a unified approach to the design of these protocols, together with their experimental verification, in a real network with various settings. The overall results of our experiments show that our dynamic combination of secrecy amplification and key extraction from radio channel fading saves a significant portion of messages with corresponding energy expenditure and can adapt to a much wider scale of environments when compared to previous solutions based on the exploitation of the individual elements of secrecy amplification and key extraction from radio channel fading.


2020 ◽  
Vol 17 (5) ◽  
pp. 2163-2171
Author(s):  
G. Manikandan ◽  
U. Sakthi

In secure communication key management plays an important role. Ensuring of security and trust worthiness in any transmission taking place via Wireless Sensor Networks (WSN) can be done using thoughtfully designed key management models. Here, the method of clustering is used to increase the system performance. Also, an effective key generation method is proposed for secured data transmission for the clustered wireless sensor networks. This method uses Chinese Remainder Theorem (CRT) for generating secret key for each cluster and merges with cluster head ID to generate a unique 144-bit encryption keys. Since, CRT uses random numbers for generating keys, separate active keys that are dynamic to ensure secured data transmission. The proposed model provides a positive impact by improving the lifetime, reducing the delay time, memory requirements and energy consumption, when compared with other existing state of art methods. Moreover, it protects data from brute-force attack, forward as well as backward secrecy and node compromised attack.


2013 ◽  
Vol 411-414 ◽  
pp. 141-144
Author(s):  
Jun Zhou ◽  
Zhen Yu Yang

The Internet of things is widespread concerned by the whole society now. As an important component of the Internet of things, wireless sensor network has wide application prospect in various fields such as medical and health, military defense. The traditional data privacy protection technology of PKI system used in the WSN networks has its own weakness. This paper presents the secret key sharing mechanism to protect data privacy. The secret key, remote node and base station used to communicate, was divided into multiple secrets. The multiple secrets were distributed in the nodes which connect directly to the base station node. Only through collect more than threshold number of multi-secret that can decrypt the communication data between the base station and the remote node. To be safer, we used digital watermarking technology to protect the data transmission between the base station and the aggregate node. These techniques combined with the data slice, homomorphism encryption technology to protect data privacy, construct a safe and efficient wireless sensor networks.


Sign in / Sign up

Export Citation Format

Share Document