An algorithm for evolving multiple quantum operators for arbitrary quantum computational problems

Author(s):  
Walter O. Krawec
2021 ◽  
Vol 20 (9) ◽  
Author(s):  
Juan Carlos Garcia-Escartin ◽  
Vicent Gimeno ◽  
Julio José Moyano-Fernández

AbstractLinear optical systems acting on photon number states produce many interesting evolutions, but cannot give all the allowed quantum operations on the input state. Using Toponogov’s theorem from differential geometry, we propose an iterative method that, for any arbitrary quantum operator U acting on n photons in m modes, returns an operator $$\widetilde{U}$$ U ~ which can be implemented with linear optics. The approximation method is locally optimal and converges. The resulting operator $$\widetilde{U}$$ U ~ can be translated into an experimental optical setup using previous results.


Author(s):  
RAD Mackenzie ◽  
G D W Smith ◽  
A. Cerezo ◽  
J A Liddle ◽  
CRM Grovenor ◽  
...  

The position sensitive atom probe (POSAP), described briefly elsewhere in these proceedings, permits both chemical and spatial information in three dimensions to be recorded from a small volume of material. This technique is particularly applicable to situations where there are fine scale variations in composition present in the material under investigation. We report the application of the POSAP to the characterisation of semiconductor multiple quantum wells and metallic multilayers.The application of devices prepared from quantum well materials depends on the ability to accurately control both the quantum well composition and the quality of the interfaces between the well and barrier layers. A series of metal organic chemical vapour deposition (MOCVD) grown GaInAs-InP quantum wells were examined after being prepared under three different growth conditions. These samples were observed using the POSAP in order to study both the composition of the wells and the interface morphology. The first set of wells examined were prepared in a conventional reactor to which a quartz wool baffle had been added to promote gas intermixing. The effect of this was to hold a volume of gas within the chamber between growth stages, leading to a structure where the wells had a composition of GalnAsP lattice matched to the InP barriers, and where the interfaces were very indistinct. A POSAP image showing a well in this sample is shown in figure 1. The second set of wells were grown in the same reactor but with the quartz wool baffle removed. This set of wells were much better defined, as can be seen in figure 2, and the wells were much closer to the intended composition, but still with measurable levels of phosphorus. The final set of wells examined were prepared in a reactor where the design had the effect of minimizing the recirculating volume of gas. In this case there was again further improvement in the well quality. It also appears that the left hand side of the well in figure 2 is more abrupt than the right hand side, indicating that the switchover at this interface from barrier to well growth is more abrupt than the switchover at the other interface.


1987 ◽  
Vol 48 (C5) ◽  
pp. C5-511-C5-515 ◽  
Author(s):  
J. L. OUDAR ◽  
J. DUBARD ◽  
F. ALEXANDRE ◽  
D. HULIN ◽  
A. MIGUS ◽  
...  

1987 ◽  
Vol 48 (C5) ◽  
pp. C5-457-C5-461
Author(s):  
C. J. SUMMERS ◽  
K. F. BRENNAN ◽  
A. TORABI ◽  
H. M. HARRIS ◽  
J. COMAS

1987 ◽  
Vol 48 (C5) ◽  
pp. C5-239-C5-242 ◽  
Author(s):  
E. GLASER ◽  
B. V. SHANABROOK ◽  
R. J. WAGNER ◽  
R. L. HAWKINS ◽  
W. J. MOORE ◽  
...  

2000 ◽  
Vol 626 ◽  
Author(s):  
Harald Beyer ◽  
Joachim Nurnus ◽  
Harald Böttner ◽  
Armin Lambrecht ◽  
Lothar Schmitt ◽  
...  

ABSTRACTThermoelectric properties of low dimensional structures based on PbTe/PbSrTe-multiple quantum-well (MQW)-structures with regard to the structural dimensions, doping profiles and levels are presented. Interband transition energies and barrier band-gap are determined from IR-transmission spectra and compared with Kronig-Penney calculations. The influence of the data evaluation method to obtain the 2D power factor will be discussed. The thermoelectrical data of our layers show a more modest enhancement in the power factor σS2 compared with former publications and are in good agreement with calculated data from Broido et al. [5]. The maximum allowed doping level for modulation doped MQW structures is determined. Thermal conductivity measurements show that a ZT enhancement can be achieved by reducing the thermal conductivity due to interface scattering. Additionally promising lead chalcogenide based superlattices for an increased 3D figure of merit are presented.


2003 ◽  
Vol 764 ◽  
Author(s):  
X. A. Cao ◽  
S. F. LeBoeuf ◽  
J. L. Garrett ◽  
A. Ebong ◽  
L. B. Rowland ◽  
...  

Absract:Temperature-dependent electroluminescence (EL) of InGaN/GaN multiple-quantum-well light-emitting diodes (LEDs) with peak emission energies ranging from 2.3 eV (green) to 3.3 eV (UV) has been studied over a wide temperature range (5-300 K). As the temperature is decreased from 300 K to 150 K, the EL intensity increases in all devices due to reduced nonradiative recombination and improved carrier confinement. However, LED operation at lower temperatures (150-5 K) is a strong function of In ratio in the active layer. For the green LEDs, emission intensity increases monotonically in the whole temperature range, while for the blue and UV LEDs, a remarkable decrease of the light output was observed, accompanied by a large redshift of the peak energy. The discrepancy can be attributed to various amounts of localization states caused by In composition fluctuation in the QW active regions. Based on a rate equation analysis, we find that the densities of the localized states in the green LEDs are more than two orders of magnitude higher than that in the UV LED. The large number of localized states in the green LEDs are crucial to maintain high-efficiency carrier capture at low temperatures.


2019 ◽  
Author(s):  
Michelle Gill ◽  
Andrew Hsu ◽  
Arthur G. Palmer, III

<div> <div> <div> <p>The zero- and double-quantum methyl TROSY Hahn-echo and the methyl <sup>1</sup>H-<sup>1</sup>H dipole- dipole cross-correlation nuclear magnetic resonance experiments enable estimation of multiple quantum chemical exchange broadening in methyl groups in proteins. The two relaxation rate constants are established to be linearly dependent using molecular dynamics simulations and empirical analysis of experimental data. This relationship allows chemical exchange broadening to be recognized as an increase in the Hahn-echo relaxation rate constant. The approach is illustrated by analyzing relaxation data collected at three temperatures for <i>E. coli </i>ribonuclease HI and by analyzing relaxation data collected for different cofactor and substrate complexes of <i>E. coli </i>AlkB. </p> </div> </div> </div>


Sign in / Sign up

Export Citation Format

Share Document