A Hybrid Model Combining Convolutional Neural Network with XGBoost for Predicting Social Media Popularity

Author(s):  
Liuwu Li ◽  
Runwei Situ ◽  
Junyan Gao ◽  
Zhenguo Yang ◽  
Wenyin Liu
2021 ◽  
pp. 1-16
Author(s):  
Hasmat Malik ◽  
Majed A. Alotaibi ◽  
Abdulaziz Almutairi

The electric load forecasting (ELF) is a key area of the modern power system (MPS) applications and also for the virtual power plant (VPP) analysis. The ELF is most prominent for the distinct applications of MPS and VPP such as real-time analysis of energy storage system, distributed energy resources, demand side management and electric vehicles etc. To manage the real-time challenges and map the stable power demand, in different time steps, the ELF is evaluated in yearly, monthly, weekly, daily, and hourly, etc. basis. In this study, an intelligent load predictor which is able to forecast the electric load for next month or day or hour is proposed. The proposed approach is a hybrid model combining empirical mode decomposition (EMD) and neural network (NN) for multi-step ahead load forecasting. The model performance is demonstrated by suing historical dataset collected form GEFCom2012 and GEFCom2014. For the demonstration of the performance, three case studies are analyzed into two categories. The demonstrated results represents the higher acceptability of the proposed approach with respect to the standard value of MAPE (mean absolute percent error).


Author(s):  
Gauri Jain ◽  
Manisha Sharma ◽  
Basant Agarwal

This article describes how spam detection in the social media text is becoming increasing important because of the exponential increase in the spam volume over the network. It is challenging, especially in case of text within the limited number of characters. Effective spam detection requires more number of efficient features to be learned. In the current article, the use of a deep learning technology known as a convolutional neural network (CNN) is proposed for spam detection with an added semantic layer on the top of it. The resultant model is known as a semantic convolutional neural network (SCNN). A semantic layer is composed of training the random word vectors with the help of Word2vec to get the semantically enriched word embedding. WordNet and ConceptNet are used to find the word similar to a given word, in case it is missing in the word2vec. The architecture is evaluated on two corpora: SMS Spam dataset (UCI repository) and Twitter dataset (Tweets scrapped from public live tweets). The authors' approach outperforms the-state-of-the-art results with 98.65% accuracy on SMS spam dataset and 94.40% accuracy on Twitter dataset.


Sensors ◽  
2018 ◽  
Vol 18 (7) ◽  
pp. 2399 ◽  
Author(s):  
Cunwei Sun ◽  
Yuxin Yang ◽  
Chang Wen ◽  
Kai Xie ◽  
Fangqing Wen

The convolutional neural network (CNN) has made great strides in the area of voiceprint recognition; but it needs a huge number of data samples to train a deep neural network. In practice, it is too difficult to get a large number of training samples, and it cannot achieve a better convergence state due to the limited dataset. In order to solve this question, a new method using a deep migration hybrid model is put forward, which makes it easier to realize voiceprint recognition for small samples. Firstly, it uses Transfer Learning to transfer the trained network from the big sample voiceprint dataset to our limited voiceprint dataset for the further training. Fully-connected layers of a pre-training model are replaced by restricted Boltzmann machine layers. Secondly, the approach of Data Augmentation is adopted to increase the number of voiceprint datasets. Finally, we introduce fast batch normalization algorithms to improve the speed of the network convergence and shorten the training time. Our new voiceprint recognition approach uses the TLCNN-RBM (convolutional neural network mixed restricted Boltzmann machine based on transfer learning) model, which is the deep migration hybrid model that is used to achieve an average accuracy of over 97%, which is higher than that when using either CNN or the TL-CNN network (convolutional neural network based on transfer learning). Thus, an effective method for a small sample of voiceprint recognition has been provided.


Author(s):  
Mohammad Javad Shooshtari ◽  
Hossein Etemadfard ◽  
Rouzbeh Shad

The widespread deployment of social media has helped researchers access an enormous amount of data in various domains, including the pandemic caused by the COVID-19 spread. This study presents a heuristic approach to classify Commercial Instagram Posts (CIPs) and explores how the businesses around the Holy Shrine – a sacred complex in Mashhad, Iran, surrounded by numerous shopping centers – were impacted by the pandemic. Two datasets of Instagram posts (one gathered data from March 14th to April 10th, 2020, when Holy Shrine and nearby shops were closed, and one extracted data from the same period in 2019), two word embedding models – aimed at vectorizing associated caption of each post, and two neural networks – multi-layer perceptron and convolutional neural network – were employed to classify CIPs in 2019. Among the scenarios defined for the 2019 CIPs classification, the results revealed that the combination of MLP and CBoW achieved the best performance, which was then used for the 2020 CIPs classification. It is found out that the fraction of CIPs to total Instagram posts has increased from 5.58% in 2019 to 8.08% in 2020, meaning that business owners were using Instagram to increase their sales and continue their commercial activities to compensate for the closure of their stores during the pandemic. Moreover, the portion of non-commercial Instagram posts (NCIPs) in total posts has decreased from 94.42% in 2019 to 91.92% in 2020, implying the fact that since the Holy Shrine was closed, Mashhad citizens and tourists could not visit it and take photos to post on their Instagram accounts.


2019 ◽  
Vol 8 (3) ◽  
pp. 1656-1661

In this paper, writer identification is performed with three models, namely, HMMBW, HMMMLP and HMMCNN. The features are extracted from the HMM and are classified using Baum Welch algorithm (BW), Multi layer perceptron (MLP) model and Convolutional neural network (CNN) model. A dataset, namely, VTU-WRITER dataset is created for the experiential purpose and the performance of the models were tested. The test train ratio was varied to derive its relation to accuracy. Also the number of states was varied to determine the optimum number of states to be considered in the HMM model. Finally the performance of all the three models is compared


Author(s):  
Feng Qian ◽  
Chengyue Gong ◽  
Karishma Sharma ◽  
Yan Liu

Fake news on social media is a major challenge and studies have shown that fake news can propagate exponentially quickly in early stages. Therefore, we focus on early detection of fake news, and consider that only news article text is available at the time of detection, since additional information such as user responses and propagation patterns can be obtained only after the news spreads. However, we find historical user responses to previous articles are available and can be treated as soft semantic labels, that enrich the binary label of an article, by providing insights into why the article must be labeled as fake. We propose a novel Two-Level Convolutional Neural Network with User Response Generator (TCNN-URG) where TCNN captures semantic information from article text by representing it at the sentence and word level, and URG learns a generative model of user response to article text from historical user responses which it can use to generate responses to new articles in order to assist fake news detection. We conduct experiments on one available dataset and a larger dataset collected by ourselves. Experimental results show that TCNN-URG outperforms the baselines based on prior approaches that detect fake news from article text alone.


Sensors ◽  
2019 ◽  
Vol 19 (11) ◽  
pp. 2508 ◽  
Author(s):  
Guolong Zhang ◽  
Ping Wang ◽  
Haibing Chen ◽  
Lan Zhang

This paper presents a localization model employing convolutional neural network (CNN) and Gaussian process regression (GPR) based on Wi-Fi received signal strength indication (RSSI) fingerprinting data. In the proposed scheme, the CNN model is trained by a training dataset. The trained model adapts to complex scenes with multipath effects or many access points (APs). More specifically, the pre-processing algorithm makes the RSSI vector which is formed by considerable RSSI values from different APs readable by the CNN algorithm. The trained CNN model improves the positioning performance by taking a series of RSSI vectors into account and extracting local features. In this design, however, the performance is to be further improved by applying the GPR algorithm to adjust the coordinates of target points and offset the over-fitting problem of CNN. After implementing the hybrid model, the model is experimented with a public database that was collected from a library of Jaume I University in Spain. The results show that the hybrid model has outperformed the model using k-nearest neighbor (KNN) by 61.8%. While the CNN model improves the performance by 45.8%, the GPR algorithm further enhances the localization accuracy. In addition, the paper has also experimented with the three kernel functions, all of which have been demonstrated to have positive effects on GPR.


Sign in / Sign up

Export Citation Format

Share Document