Generic Kinematic Model Based Volumetric Error Simulation for Various Configurations of Multi-Axis Machine Tools

Author(s):  
Jooho Hwang ◽  
JongYoup Shim
2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Yuezong Wang ◽  
Jinghui Liu ◽  
Mengfei Guo ◽  
LiuQIan Wang

Purpose A three-dimensional (3D) printing error simulation approach is proposed to analyze the influence of tilted vertical beams on the 3D printing accuracy. The purpose of this study is to analyze the influence of such errors on printing accuracy and printing quality for delta-robot 3D printer. Design/methodology/approach First, the kinematic model of a delta-robot 3D printer with an ideal geometric structure is proposed by using vector analysis. Then, the normal kinematic model of a nonideal delta-robot 3D robot with tilted vertical beams is derived based on the above ideal kinematic model. Finally, a 3D printing error simulation approach is proposed to analyze the influence of tilted vertical beams on the 3D printing accuracy. Findings The results show that tilted vertical beams can indeed cause 3D printing errors and further influence the 3D printing quality of the final products and that the 3D printing errors of tilted vertical beams are related to the rotation angles of the tilted vertical beams. The larger the rotation angles of the tilted vertical beams are, the greater the geometric deformations of the printed structures. Originality/value Three vertical beams and six horizontal beams constitute the supporting parts of the frame of a delta-robot 3D printer. In this paper, the orientations of tilted vertical beams are shown to have a significant influence on 3D printing accuracy. However, the effect of tilted vertical beams on 3D printing accuracy is difficult to capture by instruments. To reveal the 3D printing error mechanisms under the condition of tilted vertical beams, the error generation mechanism and the quantitative influence of tilted vertical beams on 3D printing accuracy are studied by simulating the parallel motion mechanism of a delta-robot 3D printer with tilted vertical beams.


2017 ◽  
Vol 92 (9-12) ◽  
pp. 3219-3224 ◽  
Author(s):  
Huabing Zou ◽  
Yuejiao Ding ◽  
Jing Zhang ◽  
Anhui Cai ◽  
Xiaohong Zhang ◽  
...  

2021 ◽  
Vol 15 (5) ◽  
pp. 599-610
Author(s):  
Md. Moktadir Alam ◽  
◽  
Soichi Ibaraki ◽  
Koki Fukuda

In advanced industrial applications, like machining, the absolute positioning accuracy of a six-axis robot is indispensable. To improve the absolute positioning accuracy of an industrial robot, numerical compensation based on positioning error prediction by the Denavit and Hartenberg (D-H) model has been investigated extensively. The main objective of this study is to review the kinematic modeling theory for a six-axis industrial robot. In the form of a tutorial, this paper defines a local coordinate system based on the position and orientation of the rotary axis average lines, as well as the derivation of the kinematic model based on the coordinate transformation theory. Although the present model is equivalent to the classical D-H model, this study shows that a different kinematic model can be derived using a different definition of the local coordinate systems. Subsequently, an algorithm is presented to identify the error sources included in the kinematic model based on a set of measured end-effector positions. The identification of the classical D-H parameters indicates a practical engineering application of the kinematic model for improving a robot’s positioning accuracy. Furthermore, this paper presents an extension of the present model, including the angular positioning deviation of each rotary axis. The angular positioning deviation of each rotary axis is formed as a function of the axis’ command angles and the direction of its rotation to model the effect of the rotary axis backlash. The identification of the angular positioning deviation of each rotary axis and its numerical compensation are presented, along with their experimental demonstration. This paper provides an essential theoretical basis for the error source diagnosis and error compensation of a six-axis robot.


Author(s):  
Yi Zhang ◽  
Jianguo Yang ◽  
Sitong Xiang ◽  
Huixiao Xiao

This article intends to provide an error compensation system for five-axis machine tools. A volumetric error model is established with homogeneous transformation matrix method, from which compensation values of both orientation and position errors can be obtained. Thirty-seven errors on a five-axis machine tool are classified into three categories – functional, random, and negligible errors, among which the effect of the first one on volumetric accuracy is considered as great enough to be included in this model. Some typical modeling methods are discussed on positioning and straightness errors, considering both geometric and thermal effects. Then, we propose a compensation implementation technique based on the function of external machine zero point shift and Ethernet data communication protocol for machine tools. Finally, laser diagonal measurements have been conducted to validate the effectiveness of the proposed volumetric error compensation system.


2019 ◽  
Vol 36 (4) ◽  
pp. 1364-1383 ◽  
Author(s):  
Wilma Polini ◽  
Andrea Corrado

Purpose The purpose of this paper is to model how geometric errors of a machined surface (or manufacturing errors) are related to locators’ error, workpiece form error and machine tool volumetric error. A kinematic model is presented that puts into relationship the locator error, the workpiece form deviations and the machine tool volumetric error. Design/methodology/approach The paper presents a general and systematic approach for geometric error modelling in drilling because of the geometric errors of locators positioning, of workpiece datum surface and of machine tool. The model can be implemented in four steps: (1) calculation of the deviation in the workpiece reference frame because of deviations of locator positions; (2) evaluation of the deviation in the workpiece reference frame owing to form deviations in the datum surfaces of the workpiece; (3) formulation of the volumetric error of the machine tool; and (4) combination of those three models. Findings The advantage of this approach lies in that it enables the source errors affecting the drilling accuracy to be explicitly separated, thereby providing designers and/or field engineers with an informative guideline for accuracy improvement through suitable measures, i.e. component tolerancing in design, machining and so on. Two typical drilling operations are taken as examples to illustrate the generality and effectiveness of this approach. Research limitations/implications Some source errors, such as the dynamic behaviour of the machine tool, are not taken into consideration, which will be modelled in practical applications. Practical implications The proposed kinematic model may be set by means of experimental tests, concerning the industrial specific application, to identify the values of the model parameters, such as standard deviation of the machine tool axes positioning and rotational errors. Then, it may be easily used to foresee the location deviation of a single or a pattern of holes. Originality/value The approaches present in the literature aim to model only one or at most two sources of machining error, such as fixturing, machine tool or workpiece datum. This paper goes beyond the state of the art because it considers the locator errors together with the form deviation on the datum surface into contact with the locators and, then, the volumetric error of the machine tool.


Sign in / Sign up

Export Citation Format

Share Document