Multi-source data analysis and evaluation of machine learning techniques for SQL injection detection

Author(s):  
Kevin Ross ◽  
Melody Moh ◽  
Teng-Sheng Moh ◽  
Jason Yao
2020 ◽  
Author(s):  
Sonam Wangchuk ◽  
Tobias Bolch

<p>An accurate detection and mapping of glacial lakes in the Alpine regions such as the Himalayas, the Alps and the Andes are challenged by many factors. These factors include 1) a small size of glacial lakes, 2) cloud cover in optical satellite images, 3) cast shadows from mountains and clouds, 4) seasonal snow in satellite images, 5) varying degree of turbidity amongst glacial lakes, and 6) frozen glacial lake surface. In our study, we propose a fully automated approach, that overcomes most of the above mentioned challenges, to detect and map glacial lakes accurately using multi-source data and machine learning techniques such as the random forest classifier algorithm. The multi-source data are from the Sentinel-1 Synthetic Aperture Radar data (radar backscatter), the Sentinel-2 multispectral instrument data (NDWI), and the SRTM digital elevation model (slope). We use these data as inputs for the rule-based segmentation of potential glacial lakes, where decision rules are implemented from the expert system. The potential glacial lake polygons are then classified either as glacial lakes or non-glacial lakes by the trained and tested random forest classifier algorithm. The performance of the method was assessed in eight test sites located across the Alpine regions (e.g. the Boshula mountain range and Koshi basin in the Himalayas, the Tajiks Pamirs, the Swiss Alps and the Peruvian Andes) of the word. We show that the proposed method performs efficiently irrespective of geographic, geologic, climatic, and glacial lake conditions.</p>


Author(s):  
Anitha Kumari K ◽  
Indusha M ◽  
Abarna Devi D ◽  
Dheva Dharshini S

With the advancement of technology, existence of energy meters are not merely to measure energy units. The proliferation of energy meter deployments had led to significant interest in analyzing the energy usage by the machines. Energy meter data is often difficult to analyzeowing to the aggregation of many disparate and complex loads. At utility scales, analysis is further complicated by the vast quantity of data and hence industries turn towards applying machine learning techniques for monitoring and measuring loads of the machines. The energy meter data analysis aims at analyzing the behavior of the machine and providing insights on usage of the energy. This will help the industries to identify the faults in the machine and to rectify it.Two use cases with two different motor specifications is considered for evaluation and the efficiency is proved by considering accuracy, precision, F-measure and recall as metrics.


2022 ◽  
pp. 209-232
Author(s):  
Xiang Li ◽  
Jingxi Liao ◽  
Tianchuan Gao

Machine learning is a broad field that contains multiple fields of discipline including mathematics, computer science, and data science. Some of the concepts, like deep neural networks, can be complicated and difficult to explain in several words. This chapter focuses on essential methods like classification from supervised learning, clustering, and dimensionality reduction that can be easily interpreted and explained in an acceptable way for beginners. In this chapter, data for Airbnb (Air Bed and Breakfast) listings in London are used as the source data to study the effect of each machine learning technique. By using the K-means clustering, principal component analysis (PCA), random forest, and other methods to help build classification models from the features, it is able to predict the classification results and provide some performance measurements to test the model.


Sign in / Sign up

Export Citation Format

Share Document