A Novel CQI Prediction Scheme for LTE-A System

Author(s):  
Xiang Zeng ◽  
Yuping Zhao ◽  
Wanyue Qu
Keyword(s):  
Author(s):  
Riichi Kudo ◽  
Kahoko Takahashi ◽  
Takeru Inoue ◽  
Kohei Mizuno

Abstract Various smart connected devices are emerging like automated driving cars, autonomous robots, and remote-controlled construction vehicles. These devices have vision systems to conduct their operations without collision. Machine vision technology is becoming more accessible to perceive self-position and/or the surrounding environment thanks to the great advances in deep learning technologies. The accurate perception information of these smart connected devices makes it possible to predict wireless link quality (LQ). This paper proposes an LQ prediction scheme that applies machine learning to HD camera output to forecast the influence of surrounding mobile objects on LQ. The proposed scheme utilizes object detection based on deep learning and learns the relationship between the detected object position information and the LQ. Outdoor experiments show that LQ prediction proposal can well predict the throughput for around 1 s into the future in a 5.6-GHz wireless LAN channel.


Symmetry ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 301
Author(s):  
Alexander Musaev ◽  
Ekaterina Borovinskaya

The problem of dynamic adaptation of prediction algorithms in chaotic environments based on identification of the situations-analogs in the database of retrospective observations is considered. Under conditions of symmetrical and unsymmetrical chaotic dynamics, traditional computational schemes of precedent prediction turn out to be ineffective. In this regard, a dynamic adaptation of precedent analysis algorithms based on the method of evolutionary modeling is proposed. Implementation of the computational precedent prediction scheme for chaotic processes as well as the evolutionary modeling method are described.


2012 ◽  
Vol 214 ◽  
pp. 306-310
Author(s):  
Han Chen Huang

This study proposes a artificial neural network with genetic algorithm (GA-ANN) for predicting the torsional strength of reinforced concrete beam. Genetic algorithm is used to the optimal network structure and parameters. A database of the torsional failure of reinforced concrete beams with a rectangular section subjected to pure torsion was obtained from existing literature for analysis. This study compare the predictions of the GA-ANN model with the ACI 318 code used for analyzing the torsional strength of reinforced concrete beam. The results show that the proposed model provides reasonable predictions of the ultimate torsional strength of reinforced concrete beams and offers superior torsion accuracy compared to that of the ACI 318-89 equation.


Sign in / Sign up

Export Citation Format

Share Document