Processing Class-Constraint K-NN Queries with MISP

Author(s):  
Evica Milchevski ◽  
Fabian Neffgen ◽  
Sebastian Michel
Keyword(s):  
2020 ◽  
Vol 2020 (12) ◽  
Author(s):  
Fridrich Valach ◽  
Donald R. Youmans

Abstract We give an interpretation of the holographic correspondence between two-dimensional BF theory on the punctured disk with gauge group PSL(2, ℝ) and Schwarzian quantum mechanics in terms of a Drinfeld-Sokolov reduction. The latter, in turn, is equivalent to the presence of certain edge states imposing a first class constraint on the model. The constrained path integral localizes over exceptional Virasoro coadjoint orbits. The reduced theory is governed by the Schwarzian action functional generating a Hamiltonian S1-action on the orbits. The partition function is given by a sum over topological sectors (corresponding to the exceptional orbits), each of which is computed by a formal Duistermaat-Heckman integral.


Mathematics ◽  
2018 ◽  
Vol 6 (10) ◽  
pp. 180 ◽  
Author(s):  
Laure Gouba

The system of a two-dimensional damped harmonic oscillator is revisited in the extended phase space. It is an old problem that has already been addressed by many authors that we present here with some fresh points of view and carry on a whole discussion. We show that the system is singular. The classical Hamiltonian is proportional to the first-class constraint. We pursue with the Dirac’s canonical quantization procedure by fixing the gauge and provide a reduced phase space description of the system. As a result, the quantum system is simply modeled by the original quantum Hamiltonian.


2014 ◽  
Vol 14 (7) ◽  
pp. 617-619 ◽  
Author(s):  
A. Farmany ◽  
M. Hatami ◽  
H. Noorizadeh ◽  
S.S. Mortazavi

1997 ◽  
Vol 12 (23) ◽  
pp. 4217-4239 ◽  
Author(s):  
Yong-Wan Kim ◽  
Mu-In Park ◽  
Young-Jai Park ◽  
Sean J. Yoon

The BRST quantization of the Abelian Proca model is performed using the Batalin–Fradkin–Tyutin and the Batalin-Fradkin-Vilkovisky formalism. First, the BFT Hamiltonian method is applied in order to systematically convert a second class constraint system of the model into an effectively first class one by introducing new fields. In finding the involutive Hamiltonian we adopt a new approach which is simpler than the usual one. We also show that in our model the Dirac brackets of the phase space variables in the original second class constraint system are exactly the same as the Poisson brackets of the corresponding modified fields in the extended phase space due to the linear character of the constraints comparing the Dirac or Faddeev–Jackiw formalisms. Then, according to the BFV formalism we obtain that the desired resulting Lagrangian preserving BRST symmetry in the standard local gauge fixing procedure naturally includes the Stückelberg scalar related to the explicit gauge symmetry breaking effect due to the presence of the mass term. We also analyze the nonstandard nonlocal gauge fixing procedure.


2013 ◽  
Vol 28 (10) ◽  
pp. 1350030 ◽  
Author(s):  
NAOKI SASAKURA

A rank-three tensor model in canonical formalism has recently been proposed. The model describes consistent local-time evolutions of fuzzy spaces through a set of first-class constraints which form an on-shell closed algebra with structure functions. In fact, the algebra provides an algebraically consistent discretization of the Dirac–DeWitt constraint algebra in the canonical formalism of general relativity. However, the configuration space of this model contains obvious degeneracies of representing identical fuzzy spaces. In this paper, to delete the degeneracies, another first-class constraint representing a scaling symmetry is added to propose a new canonical rank-three tensor model. A consequence is that, while classical solutions of the previous model have typically runaway or vanishing behaviors, the new model has a compact configuration space and its classical solutions asymptotically approach either fixed points or cyclic orbits in time evolution. Among others, fixed points contain configurations with group symmetries, and may represent stationary symmetric fuzzy spaces. Another consequence on the uniqueness of the local Hamiltonian constraint is also discussed, and a minimal canonical tensor model, which is unique, is given.


2000 ◽  
Vol 15 (31) ◽  
pp. 1915-1922 ◽  
Author(s):  
SOON-TAE HONG ◽  
WON TAE KIM ◽  
YOUNG-JAI PARK

In the framework of Dirac quantization with second-class constraints, a free particle moving on the surface of a (d-1)-dimensional sphere has an ambiguity in the energy spectrum due to the arbitrary shift of canonical momenta. We explicitly show that this spectrum obtained by the Dirac method is consistent with the result of the Batalin–Fradkin–Tyutin formalism, which is an improved Dirac method, at the level of the first-class constraint by fixing the ambiguity, and discuss its physical consequences.


2002 ◽  
Vol 17 (02) ◽  
pp. 121-129
Author(s):  
S. L. LYAKHOVICH ◽  
A. A. SHARAPOV

The necessary and sufficient conditions are established for the second-class constraint surface to be (an almost) Kähler manifold. The deformation quantization for such systems is mentioned resulting in the Wick-type symbols for the respective Dirac brackets.


Sign in / Sign up

Export Citation Format

Share Document