Machine Learning for Social Behavior Understanding

Author(s):  
Marina L. Gavrilova
Author(s):  
Monali Gulhane, T.Sajana

Nowadays many trends are being in the area of medicine to predict the human behaviour and analysis of patient behaviour is being studied but the technical difficulty of cost efficient method to predict the behaviour of user is overcome in the proposed researched methodology .The mental health of the used can lead to good immunity system to be healthy in this pandemic of COVID-19. Hence After a detailed study on different human health disease classification techniques it is found that machine learning techniques are reliable for the feature extraction and analysis of the different human parameters. CNN is the most optimum choice of classification of diseases. Feature extraction and feature selection is automatically managed by the CNN layers, which reduces the training speed. Techniques like sensor-based feature extraction like EEG, ECG, etc. will be further explored using machine learning algorithms for detection of early detections of diseases from human behavior on different platforms in this research. Social behavior and eating habits play a vital role in disease detection. A system that combines such a wide variety of features with effective classification techniques at each stage is needed. The research in this paper contributes the review of the human behavior analysis through different body parameters, food habits and social media influences with social behavior of the person. The main objective of research is to analysis theses different area parameters to predict the early signs of the diseases.


2014 ◽  
Vol 32 (2) ◽  
pp. 240-258 ◽  
Author(s):  
Bin Guo ◽  
Yunji Liang ◽  
Zhiwen Yu ◽  
Minshu Li ◽  
Xingshe Zhou

Author(s):  
Svitlana Volkova ◽  
Dustin Arendt ◽  
Emily Saldanha ◽  
Maria Glenski ◽  
Ellyn Ayton ◽  
...  

AbstractGround Truth program was designed to evaluate social science modeling approaches using simulation test beds with ground truth intentionally and systematically embedded to understand and model complex Human Domain systems and their dynamics Lazer et al. (Science 369:1060–1062, 2020). Our multidisciplinary team of data scientists, statisticians, experts in Artificial Intelligence (AI) and visual analytics had a unique role on the program to investigate accuracy, reproducibility, generalizability, and robustness of the state-of-the-art (SOTA) causal structure learning approaches applied to fully observed and sampled simulated data across virtual worlds. In addition, we analyzed the feasibility of using machine learning models to predict future social behavior with and without causal knowledge explicitly embedded. In this paper, we first present our causal modeling approach to discover the causal structure of four virtual worlds produced by the simulation teams—Urban Life, Financial Governance, Disaster and Geopolitical Conflict. Our approach adapts the state-of-the-art causal discovery (including ensemble models), machine learning, data analytics, and visualization techniques to allow a human-machine team to reverse-engineer the true causal relations from sampled and fully observed data. We next present our reproducibility analysis of two research methods team’s performance using a range of causal discovery models applied to both sampled and fully observed data, and analyze their effectiveness and limitations. We further investigate the generalizability and robustness to sampling of the SOTA causal discovery approaches on additional simulated datasets with known ground truth. Our results reveal the limitations of existing causal modeling approaches when applied to large-scale, noisy, high-dimensional data with unobserved variables and unknown relationships between them. We show that the SOTA causal models explored in our experiments are not designed to take advantage from vasts amounts of data and have difficulty recovering ground truth when latent confounders are present; they do not generalize well across simulation scenarios and are not robust to sampling; they are vulnerable to data and modeling assumptions, and therefore, the results are hard to reproduce. Finally, when we outline lessons learned and provide recommendations to improve models for causal discovery and prediction of human social behavior from observational data, we highlight the importance of learning data to knowledge representations or transformations to improve causal discovery and describe the benefit of causal feature selection for predictive and prescriptive modeling.


Author(s):  
Simon RO Nilsson ◽  
Nastacia L. Goodwin ◽  
Jia Jie Choong ◽  
Sophia Hwang ◽  
Hayden R Wright ◽  
...  

AbstractAberrant social behavior is a core feature of many neuropsychiatric disorders, yet the study of complex social behavior in freely moving rodents is relatively infrequently incorporated into preclinical models. This likely contributes to limited translational impact. A major bottleneck for the adoption of socially complex, ethology-rich, preclinical procedures are the technical limitations for consistently annotating detailed behavioral repertoires of rodent social behavior. Manual annotation is subjective, prone to observer drift, and extremely time-intensive. Commercial approaches are expensive and inferior to manual annotation. Open-source alternatives often require significant investments in specialized hardware and significant computational and programming knowledge. By combining recent computational advances in convolutional neural networks and pose-estimation with further machine learning analysis, complex rodent social behavior is primed for inclusion under the umbrella of computational neuroethology.Here we present an open-source package with graphical interface and workflow (Simple Behavioral Analysis, SimBA) that uses pose-estimation to create supervised machine learning predictive classifiers of rodent social behavior, with millisecond resolution and accuracies that can out-perform human observers. SimBA does not require specialized video acquisition hardware nor extensive computational background. Standard descriptive statistical analysis, along with graphical region of interest annotation, are provided in addition to predictive classifier generation. To increase ease-of-use for behavioural neuroscientists, we designed SimBA with accessible menus for pre-processing videos, annotating behavioural training datasets, selecting advanced machine learning options, robust classifier validation functions and flexible visualizations tools. This allows for predictive classifier transparency, explainability and tunability prior to, and during, experimental use. We demonstrate that this approach is flexible and robust in both mice and rats by classifying social behaviors that are commonly central to the study of brain function and social motivation. Finally, we provide a library of poseestimation weights and behavioral predictive classifiers for resident-intruder behaviors in mice and rats. All code and data, together with detailed tutorials and documentation, are available on the SimBA GitHub repository.Graphical abstractSimBA graphical interface (GUI) for creating supervised machine learning classifiers of rodent social behavior.(a) Pre-process videos. SimBA supports common video pre-processing functions (e.g., cropping, clipping, sampling, format conversion, etc.) that can be performed either on single videos, or as a batch.(b) Managing poseestimation data and creating classification projects. Pose-estimation tracking projects in DeepLabCut and DeepPoseKit can be either imported or created and managed within the SimBA graphical user interface, and the tracking results are imported into SimBA classification projects.SimBA also supports userdrawn region-of-interests (ROIs) for descriptive statistics of animal movements, or as features in machine learning classification projects.(c) Create classifiers, perform classifications, and analyze classification data. SimBA has graphical tools for correcting poseestimation tracking inaccuracies when multiple subjects are within a single frame, annotating behavioral events from videos, and optimizing machine learning hyperparameters and discrimination thresholds. A number of validation checkpoints and logs are included for increased classifier explainability and tunability prior to, and during, experimental use. Both detailed and summary data are provided at the end of classifier analysis. SimBA accepts behavioral annotations generated elsewhere (such as through JWatcher) that can be imported into SimBA classification projects.(d) Visualize classification results. SimBA has several options for visualizing machine learning classifications, animal movements and ROI data, and analyzing the durations and frequencies of classified behaviors.See the SimBA GitHub repository for a comprehensive documentation and user tutorials.


2020 ◽  
Vol 43 ◽  
Author(s):  
Myrthe Faber

Abstract Gilead et al. state that abstraction supports mental travel, and that mental travel critically relies on abstraction. I propose an important addition to this theoretical framework, namely that mental travel might also support abstraction. Specifically, I argue that spontaneous mental travel (mind wandering), much like data augmentation in machine learning, provides variability in mental content and context necessary for abstraction.


2020 ◽  
Author(s):  
Mohammed J. Zaki ◽  
Wagner Meira, Jr
Keyword(s):  

2020 ◽  
Author(s):  
Marc Peter Deisenroth ◽  
A. Aldo Faisal ◽  
Cheng Soon Ong
Keyword(s):  

Author(s):  
Lorenza Saitta ◽  
Attilio Giordana ◽  
Antoine Cornuejols

Sign in / Sign up

Export Citation Format

Share Document