scholarly journals A full-color single-chip-DLP projector with an embedded 2400-fps homography warping engine

Author(s):  
Shingo Kagami ◽  
Koichi Hashimoto
Keyword(s):  
2021 ◽  
Author(s):  
zhou wang ◽  
Shijie Zhu ◽  
Xinyi Shan ◽  
Zexing Yuan ◽  
Pengfei Tian ◽  
...  
Keyword(s):  

Nanomaterials ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 2482
Author(s):  
Yifan Wu ◽  
Jianshe Ma ◽  
Ping Su ◽  
Lijun Zhang ◽  
Bizhong Xia

Emerging technologies, such as smart wearable devices, augmented reality (AR)/virtual reality (VR) displays, and naked-eye 3D projection, have gradually entered our lives, accompanied by an urgent market demand for high-end display technologies. Ultra-high-resolution displays, flexible displays, and transparent displays are all important types of future display technology, and traditional display technology cannot meet the relevant requirements. Micro-light-emitting diodes (micro-LEDs), which have the advantages of a high contrast, a short response time, a wide color gamut, low power consumption, and a long life, are expected to replace traditional liquid-crystal displays (LCD) and organic light-emitting diodes (OLED) screens and become the leaders in the next generation of display technology. However, there are two major obstacles to moving micro-LEDs from the laboratory to the commercial market. One is improving the yield rate and reducing the cost of the mass transfer of micro-LEDs, and the other is realizing a full-color display using micro-LED chips. This review will outline the three main methods for applying current micro-LED full-color displays, red, green, and blue (RGB) three-color micro-LED transfer technology, color conversion technology, and single-chip multi-color growth technology, to summarize present-day micro-LED full-color display technologies and help guide the follow-up research.


MRS Bulletin ◽  
1997 ◽  
Vol 22 (10) ◽  
pp. 19-27 ◽  
Author(s):  
Wei William Lee ◽  
Paul S. Ho

Continuing improvement of microprocessor performance historically involves a decrease in the device size. This allows greater device speed, an increase in device packing density, and an increase in the number of functions that can reside on a single chip. However higher packing density requires a much larger increase in the number of interconnects. This has led to an increase in the number of wiring levels and a reduction in the wiring pitch (sum of the metal line width and the spacing between the metal lines) to increase the wiring density. The problem with this approach is that—as device dimensions shrink to less than 0.25 μm (transistor gate length)—propagation delay, crosstalk noise, and power dissipation due to resistance-capacitance (RC) coupling become significant due to increased wiring capacitance, especially interline capacitance between the metal lines on the same metal level. The smaller line dimensions increase the resistivity (R) of the metal lines, and the narrower interline spacing increases the capacitance (C) between the lines. Thus although the speed of the device will increase as the feature size decreases, the interconnect delay becomes the major fraction of the total delay and limits improvement in device performance.To address these problems, new materials for use as metal lines and interlayer dielectrics (ILD) as well as alternative architectures have been proposed to replace the current Al(Cu) and SiO2 interconnect technology.


2020 ◽  
Author(s):  
Pengbo Han ◽  
Zeng Xu ◽  
Chengwei Lin ◽  
Dongge Ma ◽  
Anjun Qin ◽  
...  

Deep blue organic-emitting fluorophores are crucial for application in white lighting and full color flat-panel displays but emitters with high color quality and efficiency are rare. Herein, novel deep blue AIE luminogens (AIEgens) with various donor units and an acceptor of cyano substituted tetraphenylbenzene (TPB) cores were developed and used to fabricate non-doped deep blue and hybrid white organic light-emitting diodes (OLEDs). Benefiting from its high emission efficiency and high proportion of horizontally oriented dipoles in the film state, the non-doped deep blue device based on CN-TPB-TPA realized a maximum external quantum efficiency 7.27%, with a low efficiency roll-off and CIE coordinates of (0.15, 0.08). Moreover, efficient two-color hybrid warm white OLEDs (CIE<sub>x,y</sub> = 0.43, 0.45) were achieved using CN-TPB-TPA as the blue-emitting layer and phosphor doped host, which realized maximum current, power, external quantum efficiencies 58.0 cd A<sup>-1</sup>, 60.7 lm W<sup>-1</sup> and 19.1%, respectively. This work provides a general strategy to achieve high performance, stable deep blue and hybrid white OLEDs by construction of AIEgens with excellent horizontal orientation


Author(s):  
Hiroyuki Hakoi ◽  
Ming Ni ◽  
Junichi Hashimoto ◽  
Takashi Sato ◽  
Shinji Shimada ◽  
...  

Author(s):  
Hidenori Kawanishi ◽  
Hiroaki Onuma ◽  
Masumi Maegawa ◽  
Takashi Kurisu ◽  
Takashi Ono ◽  
...  

1995 ◽  
Vol 5 (4) ◽  
pp. 332-338
Author(s):  
Schuyler S. Korban ◽  
Cynthia A. St. Ores

“OrchardSim: Design of an Apple Orchard” is a computer simulation program that was developed as a tool for students and new apple growers to understand the process involved in designing an efficient apple orchard. This program was developed on Toolbook software. It explores key elements involved in designing an apple orchard. Users are introduced to these elements and then asked to make selections for each of the following parameters: soil type, cultivar, rootstock, and management system. The goal of the program is to find compatible selections that will result in an appropriate design of a 1-acre orchard. This full-color program uses text, graphics animation, and still pictures to provide the following: introductory and review information about each parameter, opportunities for the user to make a selection for each parameter, and a check for choices made to determine compatibility. Users receive feedback for each specific choice made for each of the parameters throughout the program. This simulation presents an alternative instructional tool, whereby the user plays an active role in the learning process by practicing and reviewing information at one's own pace. OrchardSim provides users with immediate feedback and an excellent opportunity for making high-risk decisions, with no financial loss that otherwise would have been costly if the learning process were pursued in the real orchard.


Sign in / Sign up

Export Citation Format

Share Document