Comparative Analysis of Color Edge Detection for Image Segmentation

Author(s):  
Kusuma Wardhani Mega ◽  
Xiangru Yu ◽  
Jinping Li
2016 ◽  
Vol 3 (2) ◽  
pp. 26
Author(s):  
HEMALATHA R. ◽  
SANTHIYAKUMARI N. ◽  
MADHESWARAN M. ◽  
SURESH S. ◽  
◽  
...  

2013 ◽  
Vol 860-863 ◽  
pp. 2783-2786
Author(s):  
Yu Bing Dong ◽  
Hai Yan Wang ◽  
Ming Jing Li

Edge detection and thresholding segmentation algorithms are presented and tested with variety of grayscale images in different fields. In order to analyze and evaluate the quality of image segmentation, Root Mean Square Error is used. The smaller error value is, the better image segmentation effect is. The experimental results show that a segmentation method is not suitable for all images segmentation.


Author(s):  
Shouvik Chakraborty ◽  
Mousomi Roy ◽  
Sirshendu Hore

Image segmentation is one of the fundamental problems in image processing. In digital image processing, there are many image segmentation techniques. One of the most important techniques is Edge detection techniques for natural image segmentation. Edge is a one of the basic feature of an image. Edge detection can be used as a fundamental tool for image segmentation. Edge detection methods transform original images into edge images benefits from the changes of grey tones in the image. The image edges include a good number of rich information that is very significant for obtaining the image characteristic by object recognition and analyzing the image. In a gray scale image, the edge is a local feature that, within a neighborhood, separates two regions, in each of which the gray level is more or less uniform with different values on the two sides of the edge. In this paper, the main objective is to study the theory of edge detection for image segmentation using various computing approaches.


Author(s):  
Shouvik Chakraborty

Image segmentation has been an active topic of research for many years. Edges characterize boundaries, and therefore, detection of edges is a problem of fundamental importance in image processing. Edge detection in images significantly reduces the amount of data and filters out useless information while preserving the important structural properties in an image. Edges carry significant information about the image structure and shape, which is useful in various applications related with computer vision. In many applications, the edge detection is used as a pre-processing step. Edge detection is highly beneficial in automated cell counting, structural analysis of the image, automated object detection, shape analysis, optical character recognition, etc. Different filters are developed to find the gradients and detect edges. In this chapter, a new filter (kernel) is proposed, and the compass operator is applied on it to detect edges more efficiently. The results are compared with some of the previously proposed filters both qualitatively and quantitatively.


Sign in / Sign up

Export Citation Format

Share Document