Comparison of Thresholding and Edge Detection Segmentation Techniques

2013 ◽  
Vol 860-863 ◽  
pp. 2783-2786
Author(s):  
Yu Bing Dong ◽  
Hai Yan Wang ◽  
Ming Jing Li

Edge detection and thresholding segmentation algorithms are presented and tested with variety of grayscale images in different fields. In order to analyze and evaluate the quality of image segmentation, Root Mean Square Error is used. The smaller error value is, the better image segmentation effect is. The experimental results show that a segmentation method is not suitable for all images segmentation.

2014 ◽  
Vol 889-890 ◽  
pp. 1069-1072
Author(s):  
Yu Bing Dong ◽  
Ming Jing Li ◽  
Hai Yan Wang

Edge detection is the basic problem in the field of image processing. Various image edge detection techniques are introduced. Using various edge detection techniques different images are analyzed and compared by MATLAB7.0. In order to evaluate the effect of edge segmentation, the root mean square error is used. The experimental results show that no an edge detection technique works well for all types of images.


2019 ◽  
Vol 11 (18) ◽  
pp. 2097 ◽  
Author(s):  
Xin Li ◽  
Taoyang Wang ◽  
Guo Zhang ◽  
Boyang Jiang ◽  
Peng Jia ◽  
...  

The Luojia1-01 satellite provides high-resolution, high-sensitivity nighttime light data at a resolution of 130 m. To effectively use the Luojia1-01 nighttime light data for global applications, the problems of relative and absolute positioning accuracy should be solved. This paper proposes a high accuracy regional geometric processing method of nighttime light imagery. We utilized a nighttime light image matching algorithm to obtain tie points, which are used in the planar block adjustment with ground control points. Then, orthorectification of all images is implemented. Finally, we obtain the nighttime light map of China by mosaicking all the nighttime light orthoimages. According to the experimental results for 275 Luojia1-01 images, the root mean square error of the tie points is 0.983 pixels and the root mean square error of independent checkpoints is 195.491 m (less than 1.5 pixels) after the planar block adjustment. The experimental results prove the validity and feasibility of the proposed method.


2020 ◽  
Vol 12 (14) ◽  
pp. 2275 ◽  
Author(s):  
Xiaotao Wu ◽  
Guihua Lu ◽  
Zhiyong Wu ◽  
Hai He ◽  
Tracy Scanlon ◽  
...  

With the increasing utilization of satellite-based soil moisture products, a primary challenge is knowing their accuracy and robustness. This study presents a comprehensive assessment over China of three widely used global satellite soil moisture products, i.e., Soil Moisture Active Passive (SMAP), European Space Agency (ESA) Climate Change Initiative (CCI) Soil Moisture, Soil Moisture and Ocean Salinity (SMOS). In situ soil moisture from 1682 stations and Variable Infiltration Capacity (VIC) model are used to evaluate the performance of SMAP_L3, ESA_CCI_SM_COMBINED, SMOS_CATDS_L3 from 31 March 2015 to 3 June 2018. The Triple Collocation (TC) approach is used to minimize the uncertainty (e.g., scale issue) during the validation process. The TC analysis is conducted using three triplets, i.e., [SMAP-Insitu-VIC], [CCI-Insitu-VIC], [SMOS-Insitu-VIC]. In general, SMAP is the most reliable product, reflecting the main spatiotemporal characteristics of soil moisture, while SMOS has the lowest accuracy. The results demonstrate that the overall root mean square error of SMAP, CCI, SMOS is 0.040, 0.028, 0.107 m3m−3, respectively. The overall temporal correlation coefficient of SMAP, CCI, SMOS is 0.68, 0.65, 0.38, respectively. The overall fractional root mean square error of SMAP, CCI, SMOS is 0.707, 0.750, 0.897, respectively. In irrigated areas, the accuracy of CCI is reduced due to the land surface model (which does not consider irrigation) used for the rescaling of the CCI_COMBINED soil moisture product during the merging process, while SMAP and SMOS preserve the irrigation signal. The quality of SMOS is most strongly impacted by land surface temperature, vegetation, and soil texture, while the quality of CCI is the least affected by these factors. With the increase of Radio Frequency Interference, the accuracy of SMOS decreases dramatically, followed by SMAP and CCI. Higher representativeness error of in situ stations is noted in regions with higher topographic complexity. This study helps to provide a guideline for the application of satellite soil moisture products in scientific research and gives some references (e.g., modify data algorithm according to the main error sources) for improving the data quality.


2021 ◽  
Vol 13 (9) ◽  
pp. 1630
Author(s):  
Yaohui Zhu ◽  
Guijun Yang ◽  
Hao Yang ◽  
Fa Zhao ◽  
Shaoyu Han ◽  
...  

With the increase in the frequency of extreme weather events in recent years, apple growing areas in the Loess Plateau frequently encounter frost during flowering. Accurately assessing the frost loss in orchards during the flowering period is of great significance for optimizing disaster prevention measures, market apple price regulation, agricultural insurance, and government subsidy programs. The previous research on orchard frost disasters is mainly focused on early risk warning. Therefore, to effectively quantify orchard frost loss, this paper proposes a frost loss assessment model constructed using meteorological and remote sensing information and applies this model to the regional-scale assessment of orchard fruit loss after frost. As an example, this article examines a frost event that occurred during the apple flowering period in Luochuan County, Northwestern China, on 17 April 2020. A multivariable linear regression (MLR) model was constructed based on the orchard planting years, the number of flowering days, and the chill accumulation before frost, as well as the minimum temperature and daily temperature difference on the day of frost. Then, the model simulation accuracy was verified using the leave-one-out cross-validation (LOOCV) method, and the coefficient of determination (R2), the root mean square error (RMSE), and the normalized root mean square error (NRMSE) were 0.69, 18.76%, and 18.76%, respectively. Additionally, the extended Fourier amplitude sensitivity test (EFAST) method was used for the sensitivity analysis of the model parameters. The results show that the simulated apple orchard fruit number reduction ratio is highly sensitive to the minimum temperature on the day of frost, and the chill accumulation and planting years before the frost, with sensitivity values of ≥0.74, ≥0.25, and ≥0.15, respectively. This research can not only assist governments in optimizing traditional orchard frost prevention measures and market price regulation but can also provide a reference for agricultural insurance companies to formulate plans for compensation after frost.


Forests ◽  
2021 ◽  
Vol 12 (8) ◽  
pp. 1020
Author(s):  
Yanqi Dong ◽  
Guangpeng Fan ◽  
Zhiwu Zhou ◽  
Jincheng Liu ◽  
Yongguo Wang ◽  
...  

The quantitative structure model (QSM) contains the branch geometry and attributes of the tree. AdQSM is a new, accurate, and detailed tree QSM. In this paper, an automatic modeling method based on AdQSM is developed, and a low-cost technical scheme of tree structure modeling is provided, so that AdQSM can be freely used by more people. First, we used two digital cameras to collect two-dimensional (2D) photos of trees and generated three-dimensional (3D) point clouds of plot and segmented individual tree from the plot point clouds. Then a new QSM-AdQSM was used to construct tree model from point clouds of 44 trees. Finally, to verify the effectiveness of our method, the diameter at breast height (DBH), tree height, and trunk volume were derived from the reconstructed tree model. These parameters extracted from AdQSM were compared with the reference values from forest inventory. For the DBH, the relative bias (rBias), root mean square error (RMSE), and coefficient of variation of root mean square error (rRMSE) were 4.26%, 1.93 cm, and 6.60%. For the tree height, the rBias, RMSE, and rRMSE were—10.86%, 1.67 m, and 12.34%. The determination coefficient (R2) of DBH and tree height estimated by AdQSM and the reference value were 0.94 and 0.86. We used the trunk volume calculated by the allometric equation as a reference value to test the accuracy of AdQSM. The trunk volume was estimated based on AdQSM, and its bias was 0.07066 m3, rBias was 18.73%, RMSE was 0.12369 m3, rRMSE was 32.78%. To better evaluate the accuracy of QSM’s reconstruction of the trunk volume, we compared AdQSM and TreeQSM in the same dataset. The bias of the trunk volume estimated based on TreeQSM was −0.05071 m3, and the rBias was −13.44%, RMSE was 0.13267 m3, rRMSE was 35.16%. At 95% confidence interval level, the concordance correlation coefficient (CCC = 0.77) of the agreement between the estimated tree trunk volume of AdQSM and the reference value was greater than that of TreeQSM (CCC = 0.60). The significance of this research is as follows: (1) The automatic modeling method based on AdQSM is developed, which expands the application scope of AdQSM; (2) provide low-cost photogrammetric point cloud as the input data of AdQSM; (3) explore the potential of AdQSM to reconstruct forest terrestrial photogrammetric point clouds.


2008 ◽  
Vol 54 (No. 1) ◽  
pp. 9-16
Author(s):  
R. Petráš ◽  
J. Mecko ◽  
V. Nociar

The results obtained in research on the quality of raw timber by means of the structure of assortments for the stands of poplar clones Robusta and I-214 are presented in the paper. Models for an estimation of the structure of basic assortments of poplar stands were constructed separately for each clone in dependence on mean diameter, quality of stems, and damage to stems in the stand. The clone Robusta has higher proportions of higher-quality assortments than the clone I-214. The accuracy of models was determined on empirical material. It was confirmed by statistical tests that the models did not have a systematic error. The relative root mean-square error for main assortments of the clone I-214 is 15–27% and Robusta 13–24%.


2013 ◽  
Vol 807-809 ◽  
pp. 1967-1971
Author(s):  
Yan Bai ◽  
Xiao Yan Duan ◽  
Hai Yan Gong ◽  
Cai Xia Xie ◽  
Zhi Hong Chen ◽  
...  

In this paper, the content of forsythoside A and ethanol-extract were rapidly determinated by near-infrared reflectance spectroscopy (NIRS). 85 samples of Forsythiae Fructus harvested in Luoyang from July to September in 2012 were divided into a calibration set (75 samples) and a validation set (10 samples). In combination with the partical least square (PLS), the quantitative calibration models of forsythoside A and ethanol-extract were established. The correlation coefficient of cross-validation (R2) was 0.98247 and 0.97214 for forsythoside A and ethanol-extract, the root-mean-square error of calibration (RMSEC) was 0.184 and 0.570, the root-mean-square error of cross-validation (RMSECV) was 0.81736 and 0.36656. The validation set were used to evaluate the performance of the models, the root-mean-square error of prediction (RMSEP) was 0.221 and 0.518. The results indicated that it was feasible to determine the content of forsythoside A and ethanol-extract in Forsythiae Fructus by near-infrared spectroscopy.


Food Research ◽  
2021 ◽  
Vol 5 (2) ◽  
pp. 248-253
Author(s):  
A.B. Riyanta ◽  
S. Riyanto ◽  
E. Lukitaningsih ◽  
A. Rohman

Soybean oil (SBO), sunflower oil (SFO) and grapeseed oil (GPO) contain high levels of unsaturated fats that are good for health and have proximity to candlenut oil. Candlenut oil (CNO) has a lower price and easier to get oil from that seeds than other seed oils, so it is used as adulteration for gains. Therefore, authentication is required to ensure the purity of oils by proper analysis. This research was aimed to highlight the FTIR spectroscopy application with multivariate calibration is a potential analysis for scanning the quaternary mixture of CNO, SBO, SFO and GPO. CNO quantification was performed using multivariate calibrations of principle component (PCR) regression and partial least (PLS) square to predict the model from the optimization FTIR spectra regions. The highest R2 and the lowest values of root mean square error of calibration (RMSEC) and root mean square error of prediction (RMSEP) were used as the basis for selection of multivariate calibrations created using several wavenumbers region of FTIR spectra. Wavenumbers regions of 4000-650 cm-1 from the second derivative FTIR-ATR spectra using PLS was used for quantitative analysis of CNO in quaternary mixture with SBO, SFO and GPO with R2 calibration = 0.9942 and 0.0239% for RMSEC value and 0.0495%. So, it can be concluded the use of FTIR spectra combination with PLS is accurate to detect quaternary mixtures of CNO, SBO, SFO and GPO with the highest R2 values and the lowest RMSEC and RMSEP values.


Sign in / Sign up

Export Citation Format

Share Document