A survey of image corner detection methods

Author(s):  
He Yarui ◽  
Li Yunhong ◽  
Fang Qiaochu
Author(s):  
Anan Banharnsakun ◽  
Supannee Tanathong

Purpose Developing algorithms for automated detection and tracking of multiple objects is one challenge in the field of object tracking. Especially in a traffic video monitoring system, vehicle detection is an essential and challenging task. In the previous studies, many vehicle detection methods have been presented. These proposed approaches mostly used either motion information or characteristic information to detect vehicles. Although these methods are effective in detecting vehicles, their detection accuracy still needs to be improved. Moreover, the headlights and windshields, which are used as the vehicle features for detection in these methods, are easily obscured in some traffic conditions. The paper aims to discuss these issues. Design/methodology/approach First, each frame will be captured from a video sequence and then the background subtraction is performed by using the Mixture-of-Gaussians background model. Next, the Shi-Tomasi corner detection method is employed to extract the feature points from objects of interest in each foreground scene and the hierarchical clustering approach is then applied to cluster and form them into feature blocks. These feature blocks will be used to track the moving objects frame by frame. Findings Using the proposed method, it is possible to detect the vehicles in both day-time and night-time scenarios with a 95 percent accuracy rate and can cope with irrelevant movement (waving trees), which has to be deemed as background. In addition, the proposed method is able to deal with different vehicle shapes such as cars, vans, and motorcycles. Originality/value This paper presents a hierarchical clustering of features approach for multiple vehicles tracking in traffic environments to improve the capability of detection and tracking in case that the vehicle features are obscured in some traffic conditions.


2013 ◽  
Vol 850-851 ◽  
pp. 767-770 ◽  
Author(s):  
Na Yao ◽  
Tie Cheng Bai ◽  
Jie Chen

According to the characteristics of Chinese characters image, we propose an improved corner detection method based on FAST algorithm and Harris algorithm to improve detection rate and shorten the running time for next feature extraction in this paper. The image of Chinese characters is detected for corners using FAST algorithm Firstly. Second, computing corner response function (CRF) of Harris algorithm, false corners are removed. The corners founded lastly are the endpoints of line segments, providing the length of line segments for shape feature extraction. The proposed method is compared with several corner detection methods over a number of images. Experimental results show that the proposed method shows better performance in terms of detection rate and running time.


Author(s):  
NA LU ◽  
ZUREN FENG

There is no parametric formulation of corner, so the conventional Hough transform cannot be employed to detect corners directly. A random corner detection method is developed in this paper based on a new concept "accumulative intersection space" under Monte Carlo scheme. This method transforms the corner detection in the image space into local maxima localization in the accumulative intersection space where the intersections are accumulated by random computations. The proposed algorithm has been demonstrated by both theory and experiments. The proposed algorithm is isotropic, robust to image rotation, insensitive to noise and false corners on diagonal edges. Unlike the other existing contour based corner detection methods, our algorithm can effectively avoid the influence of the edge detectors, such as rounding corners or line interceptions. Extensive comparisons among our approach and the other detectors including Harris operator, Fei Shen and Han Wang detector, Han Wang and Brady detector, Foveated Visual Search method and SIFT feature, have shown the effectiveness of our method.


2008 ◽  
Vol 13-14 ◽  
pp. 203-210 ◽  
Author(s):  
Arin Jumpasut ◽  
Nik Petrinic ◽  
Ben C.F. Elliott ◽  
Clive R. Siviour ◽  
Matthew R. Arthington

This study concentrates on the use of corners targets for photogrammetry in impact engineering. An example of high speed experimentation is presented and the associated difficulties are discussed. The relevant corner detection methods that have been implemented and developed are investigated and their accuracy assessed. This study focuses solely upon the effect of blurring on the accuracy of the detection methods; it is part of a much wider investigation into the use and accuracy of different targets and target detection methods for photogrammetry in impact engineering. A set of tests has been performed and the errors between the true position of the corner and the detected position are compared.


2012 ◽  
Vol 239-240 ◽  
pp. 713-716 ◽  
Author(s):  
Fang Jie Yu ◽  
Xin Luan ◽  
Da Lei Song ◽  
Xiu Fang Li ◽  
Hong Hong Zhou

This paper presents a novel sub-pixel corner detection algorithm for camera calibration. In order to achieve high accuracy and robust performance, the pixel level candidate regions are firstly identified by Harris detector. Within these regions, the center of gravity (COG) method is used to gain sub-pixel corner detection. Instead of using the intensity value of the regions, we propose to use corner response function (CRF) as the distribution of the weights of COG. The results of camera calibration experiments show that the proposed algorithm is more accurate and robust than traditional COG sub-pixel corner detection methods.


2014 ◽  
Vol 7 (3) ◽  
Author(s):  
Jose Javier Bengoechea ◽  
Juan J. Cerrolaza ◽  
Arantxa Villanueva ◽  
Rafael Cabeza

Accurate detection of iris center and eye corners appears to be a promising approach for low cost gaze estimation. In this paper we propose novel eye inner corner detection methods. Appearance and feature based segmentation approaches are suggested. All these methods are exhaustively tested on a realistic dataset containing images of subjects gazing at different points on a screen. We have demonstrated that a method based on a neural network presents the best performance even in light changing scenarios. In addition to this method, algorithms based on AAM and Harris corner detector present better accuracies than recent high performance face points tracking methods such as Intraface.


Sign in / Sign up

Export Citation Format

Share Document