Teaching Machine Learning to Computer Science Preservice Teachers

Author(s):  
Koby Mike ◽  
Rinat B. Rosenberg-Kima
Author(s):  
Christian Herta ◽  
Benjamin Voigt ◽  
Patrick Baumann ◽  
Klaus Strohmenger ◽  
Christoph Jansen ◽  
...  

Machine learning (ML) is considered to be hard because it is relatively complicated in comparison to other topics of computer science. The reason is that machine learning is based heavily on mathematics and abstract concepts. This results in an entry barrier for students: Most students want to avoid such difficult topics in elective courses or self-study. In the project Deep.Teaching we address these issues: We motivate by selected applications and support courses as well as self-study by giving practical exercises for different topics in machine learning. The teaching material, provided as jupyter notebooks, consists of theoretical and programming sections. For didactical reasons, we designed programming exercises such that the students have to deeply understand the concepts and principles before they can start to implement a solution. We provide all necessary boilerplate code such that the students can primarily focus on the educational objectives of the exercises. We used different ways to give feedback for self-study: obscured solutions for mathematical results, software tests with assert statements, and graphical illustrations of sample solutions. All of the material is published under a permissive license. Developing jupyter notebooks collaboratively for educational purposes poses some problems. We address these issues and provide solutions/best practices. 


Author(s):  
Emily C. Bouck ◽  
Phil Sands ◽  
Holly Long ◽  
Aman Yadav

Increasingly in K–12 schools, students are gaining access to computational thinking (CT) and computer science (CS). This access, however, is not always extended to students with disabilities. One way to increase CT and CS (CT/CS) exposure for students with disabilities is through preparing special education teachers to do so. In this study, researchers explore exposing special education preservice teachers to the ideas of CT/CS in the context of a mathematics methods course for students with disabilities or those at risk of disability. Through analyzing lesson plans and reflections from 31 preservice special education teachers, the researchers learned that overall emerging promise exists with regard to the limited exposure of preservice special education teachers to CT/CS in mathematics. Specifically, preservice teachers demonstrated the ability to include CT/CS in math lesson plans and showed understanding of how CT/CS might enhance instruction with students with disabilities via reflections on these lessons. The researchers, however, also found a need for increased experiences and opportunities for preservice special education teachers with CT/CS to more positively impact access for students with disabilities.


2021 ◽  
Vol 28 (3) ◽  
pp. 442-446
Author(s):  
Valentin Kuleto ◽  
Milena Ilić

AI is a branch of computer science that emphasises the development of intelligent machines that think and work like humans. Examples of AI applications are speech recognition, natural language processing, image recognition etc. The term ML represents the application of AI to enable systems’ ability to learn and improve based on experience, without the explicit need for programming, using various problem-solving algorithms. For example, in machine learning, computers learn based on the data they process, not program instructions


2021 ◽  
Vol 52 (2) ◽  
pp. 46-70
Author(s):  
A. Knop ◽  
S. Lovett ◽  
S. McGuire ◽  
W. Yuan

Communication complexity studies the amount of communication necessary to compute a function whose value depends on information distributed among several entities. Yao [Yao79] initiated the study of communication complexity more than 40 years ago, and it has since become a central eld in theoretical computer science with many applications in diverse areas such as data structures, streaming algorithms, property testing, approximation algorithms, coding theory, and machine learning. The textbooks [KN06,RY20] provide excellent overviews of the theory and its applications.


Author(s):  
S. R. Mani Sekhar ◽  
G. M. Siddesh

Machine learning is one of the important areas in the field of computer science. It helps to provide an optimized solution for the real-world problems by using past knowledge or previous experience data. There are different types of machine learning algorithms present in computer science. This chapter provides the overview of some selected machine learning algorithms such as linear regression, linear discriminant analysis, support vector machine, naive Bayes classifier, neural networks, and decision trees. Each of these methods is illustrated in detail with an example and R code, which in turn assists the reader to generate their own solutions for the given problems.


Author(s):  
Qifang Bi ◽  
Katherine E Goodman ◽  
Joshua Kaminsky ◽  
Justin Lessler

Abstract Machine learning is a branch of computer science that has the potential to transform epidemiologic sciences. Amid a growing focus on “Big Data,” it offers epidemiologists new tools to tackle problems for which classical methods are not well-suited. In order to critically evaluate the value of integrating machine learning algorithms and existing methods, however, it is essential to address language and technical barriers between the two fields that can make it difficult for epidemiologists to read and assess machine learning studies. Here, we provide an overview of the concepts and terminology used in machine learning literature, which encompasses a diverse set of tools with goals ranging from prediction to classification to clustering. We provide a brief introduction to 5 common machine learning algorithms and 4 ensemble-based approaches. We then summarize epidemiologic applications of machine learning techniques in the published literature. We recommend approaches to incorporate machine learning in epidemiologic research and discuss opportunities and challenges for integrating machine learning and existing epidemiologic research methods.


AI Magazine ◽  
2017 ◽  
Vol 38 (4) ◽  
pp. 99-106
Author(s):  
Jeannette Bohg ◽  
Xavier Boix ◽  
Nancy Chang ◽  
Elizabeth F. Churchill ◽  
Vivian Chu ◽  
...  

The Association for the Advancement of Artificial Intelligence, in cooperation with Stanford University's Department of Computer Science, presented the 2017 Spring Symposium Series, held Monday through Wednesday, March 27–29, 2017 on the campus of Stanford University. The eight symposia held were Artificial Intelligence for the Social Good (SS-17-01); Computational Construction Grammar and Natural Language Understanding (SS-17-02); Computational Context: Why It's Important, What It Means, and Can It Be Computed? (SS-17-03); Designing the User Experience of Machine Learning Systems (SS-17-04); Interactive Multisensory Object Perception for Embodied Agents (SS-17-05); Learning from Observation of Humans (SS-17-06); Science of Intelligence: Computational Principles of Natural and Artificial Intelligence (SS-17-07); and Wellbeing AI: From Machine Learning to Subjectivity Oriented Computing (SS-17-08). This report, compiled from organizers of the symposia, summarizes the research that took place.


2019 ◽  
Vol 10 (1) ◽  
pp. 3-16
Author(s):  
Claudia Schubert ◽  
Marc-Thorsten Hütt

Algorithms are the key instrument for the economy-on-demand using platforms for its clients, workers and self-employed. An effective legal enforcement must not be limited to the control of the outcome of the algorithm but should also focus on the algorithm itself. This article assesses the present capacities of computer science to control and certify rule-based and data-centric (machine learning) algorithms. It discusses the legal instruments for the control of algorithms and their enforcement and institutional pre-conditions. It favours a digital agency that concentrates expertise and bureaucracy for the certification and official calibration of algorithms and promotes an international approach to the regulation of legal standards.


Sign in / Sign up

Export Citation Format

Share Document