scholarly journals Visualizing Vehicle Acceleration and Braking Energy at Intersections along a Major Traffic Corridor

Author(s):  
Haowen Xu ◽  
Anne Berres ◽  
Chieh Ross Wang ◽  
Tim J. LaClair ◽  
Jibonananda Sanyal
2003 ◽  
Vol 31 (3) ◽  
pp. 189-202 ◽  
Author(s):  
D. Zheng

Abstract A procedure based on steady state rolling contact Finite Element Analysis (FEM) has been developed to predict tire cross section tread wear profile under specified vehicle driving conditions. This procedure not only considers the tire construction effects, it also includes the effects of materials, vehicle setup, test course, and driver's driving style. In this algorithm, the vehicle driving conditions are represented by the vehicle acceleration histogram. Vehicle dynamic simulations are done to transform the acceleration histogram into tire loading condition distributions for each tire position. Tire weight loss rates for different vehicle accelerations are generated based on a steady state rolling contact simulation algorithm. Combining the weight loss rate and the vehicle acceleration histogram, nine typical tire loading conditions are chosen with different weight factors to represent tire usage conditions. It is discovered that the tire tread wear rate profile is changing continuously as the tire is worn. Simulation of a new tire alone cannot be used to predict the tire cross-section tread wear profile. For this reason, an incremental tread wear simulation procedure is performed to predict the tire cross section tread wear profile. Compared with actual tire cross-section tread wear profiles, good results are obtained from the simulations.


2012 ◽  
Vol 3 (6) ◽  
pp. 25-28
Author(s):  
Kristina Kemzūraitė ◽  
Šarūnas Mikaliūnas ◽  
Edgar Sokolovskij ◽  
Giedrius Garbinčius

The article analyzes the movement of the car on the curve on the slippery and snowy road surface with asphalted ruts. The paper reviews literature related to lateral and longitudinal vehicle acceleration and dynamics of vehicle movement. The experimental facts of vehicle lateral acceleration are given in graphical charts. The article also describes the acceleration values and stability of the automobile depending on the speed in the curve. The findings are given based on the results. Santrauka Straipsnyje nagrinėjamas automobilio judėjimas posūkyje esant slidžiai ir snieguotai su asfaltuotomis provėžomis kelio dangai. Apžvelgiama literatūra, susijusi su automobilių skersiniais ir išilginiais pagreičiais, automobilių judėjimo dinamika. Eksperimentinėje dalyje pateikiami automobilių skersinių pagreičių grafikai. Nagrinėjamas pagreičių dydis ir automobilio stabilumas priklausomai nuo judėjimo greičio tame kelio posūkyje. Remiantis gautais rezultatais pateikiamos išvados.


2011 ◽  
Vol 460-461 ◽  
pp. 704-709
Author(s):  
Shu Tao Zheng ◽  
Zheng Mao Ye ◽  
Jun Jin ◽  
Jun Wei Han

Vehicle driving simulators are widely employed in training and entertainment utilities because of its safe, economic and efficient. Amphibious vehicle driving simulator was used to simulate amphibious vehicle on land and in water. Because of the motion difference between aircraft and amphibious vehicle, it is necessary to design a reasonable 6-DOF motion system according to the flight simulator motion system standard and vehicle motion parameter. FFT of DSP and PSD were used to analysis the relationship between them. Finally according to the result analysis, a set of reasonable 6-DOF motion system motion parameter was given to realize the driving simulator motion cueing used to reproduce vehicle acceleration.


Author(s):  
R. Austin Dollar ◽  
Ardalan Vahidi

Autonomous vehicle technology provides the means to optimize motion planning beyond human capacity. In particular, the problem of navigating multi-lane traffic optimally for trip time, energy efficiency, and collision avoidance presents challenges beyond those of single-lane roadways. For example, the host vehicle must simultaneously track multiple obstacles, the drivable region is non-convex, and automated vehicles must obey social expectations. Furthermore, reactive decision-making may result in becoming stuck in an undesirable traffic position. This paper presents a fundamental approach to these problems using model predictive control with a mixed integer quadratic program at its core. Lateral and longitudinal movements are coordinated to avoid collisions, track a velocity and lane, and minimize acceleration. Vehicle-to-vehicle connectivity provides a preview of surrounding vehicles’ motion. Simulation results show a 79% reduction in congestion-induced travel time and an 80% decrease in congestion-induced fuel consumption compared to a rule-based approach.


Author(s):  
Kevin A. Rider ◽  
Bernard J. Martin

Terrain-induced vibration of a moving vehicle adversely affects the ability to quickly and accurately perform in-vehicle pointing tasks by altering the planned fingertip trajectory. The relationship between movement speed and accuracy is a result of the combined use of visual and somatosensory feedbacks which are used to discern movement deviations and make necessary compensatory movements. Participants (N=20) performed three-dimensional rapid pointing tasks under stationary and ride motion conditions to three touchpanel displays. Ride motion contributed to increased reaction and movement times and increased endpoint variability. Trajectory deviations were correlated to the principal direction of vehicle acceleration. Reaches orthogonal to the dominant vehicle acceleration exhibited larger endpoint variability, and reaches to the elevated touchpanel resulted in the largest variability across all motion conditions. Principal axes of endpoint ellipses were along the on-axis and off-axis directions of fingertip movement.


Author(s):  
Nayere Zaghari ◽  
Mahmood Fathy ◽  
Seyed Mahdi Jameii ◽  
Mohammad Sabokrou ◽  
Mohammad Shahverdy

Considering the significant advancements in autonomous vehicle technology, research in this field is of interest to researchers. To drive vehicles autonomously, controlling steer angle, gas hatch, and brakes need to be learned. The behavioral cloning method is used to imitate humans’ driving behavior. We created a dataset of driving in different routes and conditions and using the designed model, the output used for controlling the vehicle is obtained. In this paper, the Learning of Self-driving Vehicles Based on Real Driving Behavior Using Deep Neural Network Techniques (LSV-DNN) is proposed. We designed a convolutional network which uses the real driving data obtained through the vehicle’s camera and computer. The response of the driver is during driving is recorded in different situations and by converting the real driver’s driving video to images and transferring the data to an excel file, obstacle detection is carried out with the best accuracy and speed using the Yolo algorithm version 3. This way, the network learns the response of the driver to obstacles in different locations and the network is trained with the Yolo algorithm version 3 and the output of obstacle detection. Then, it outputs the steer angle and amount of brake, gas, and vehicle acceleration. The LSV-DNN is evaluated here via extensive simulations carried out in Python and TensorFlow environment. We evaluated the network error using the loss function. By comparing other methods which were conducted on the simulator’s data, we obtained good performance results for the designed network on the data from KITTI benchmark, the data collected using a private vehicle, and the data we collected.


Sign in / Sign up

Export Citation Format

Share Document