Electriflow: Augmenting Books With Tangible Animation Using Soft Electrohydraulic Actuators

2021 ◽  
Author(s):  
Purnendu ◽  
Sasha Novack ◽  
Eric Acome ◽  
Mirela Alistar ◽  
Christoph Keplinger ◽  
...  
2021 ◽  
Vol 10 (1) ◽  
pp. 43
Author(s):  
Fattah Hanafi Sheikhha ◽  
Ali Afzalaghaeinaeini ◽  
Jaho Seo

A hydraulic excavator consists of multiple electrohydraulic actuators (EHA). Due to uncertainties and nonlinearities in EHAs, it is challenging to devise a proper control strategy. To tackle this issue, a major goal of our study is to provide an efficient control strategy to minimize tracking errors of the bucket tip position for autonomous excavation. To accomplish the goal, the study offers a collaboration of PID and fuzzy controllers that are used to compensate for contour errors and achieve accurate actuator position control, respectively. Co-simulation models including control algorithms and hydraulic components were created using Matlab and Amesim to validate the performance of the designed controllers. Simulations indicate that the proposed method enables achieving accurate tracking control for autonomous excavation with small tracking errors despite the nonlinear characteristics of the hydraulic excavator system.


Author(s):  
Qing Guo ◽  
Zhenlei Chen ◽  
Dan Jiang

Abstract A leader-following quasi-synchronization control is proposed in multiple electrohydraulic actuators (MEHAs) under different switching network topologies to guarantee the follower electrohydraulic actuators (EHAs) tracking the leader motion. Firstly, each electro-hydraulic actuator (EHA) has a 3-order nonlinear dynamics with unknown external load. Then by using Lie derivative technique, the MEHAs nonlinear models with $n+1$ nodes are feedback linearized for convenient control design. Furthermore, the leader node is constructed as a virtual simulation model to be stabilized by PI controller. Meanwhile, a quasi-synchronized controller together with a disturbance observer is designed by LMI and Lyapunov techniques to guarantee that the synchronization errors between the n follower nodes and the leader node 0 are uniformly ultimate boundaries. Finally, the effectiveness of the leader-following quasi-synchronized controller is verified by a MEHAs experimental bench with 3 EHAs under switching network topologies.


2014 ◽  
pp. 302-315
Author(s):  
D. Fornoff ◽  
T. Müller ◽  
D. Grauman ◽  
E. Hendriks ◽  
T. Laux ◽  
...  

Sensors ◽  
2020 ◽  
Vol 20 (4) ◽  
pp. 1140 ◽  
Author(s):  
Xinglu Li ◽  
Zongxia Jiao ◽  
Yang Li ◽  
Yuan Cao

A linear oscillating motor has a direct and efficient linear motion output and is widely used in linear actuation systems. The motor is often applied to compact hybrid electrohydraulic actuators to drive a linear pump. However, the periodic switch of the rectification valve in the pump brings the hydraulic step load to the linear motor, which causes periodic oscillation waveform distortions. The distortion results in the reduction of pumping capacity. The conventional feedback proportional-integral-derivative control is applied to the pump, however, this solution cannot handle the step load as well as resolving nonlinear properties and uncertainties. In this paper, we introduce a nonlinear model to identify periodic hydraulic load. Then, the loads are broken up into a set of simple terms by Fourier series approximation. The uncertain terms and other modeling uncertainties are estimated and compensated by the practical adaptive controller. A robust control term is also developed to handle uncertain nonlinearities. The controller overcame drawbacks of conventional repetitive controllers, such as heavy memory requirements and noise sensitivity. The controller can achieve a prescribed final tracking accuracy under periodic hydraulic load via Lyapunov analysis. Finally, experimental results on the linear oscillating motor-pump are provided for validation of the effectiveness of the scheme.


Sign in / Sign up

Export Citation Format

Share Document