scholarly journals Constant-Length Labeling Schemes for Deterministic Radio Broadcast

2021 ◽  
Vol 8 (3) ◽  
pp. 1-17
Author(s):  
Faith Ellen ◽  
Barun Gorain ◽  
Avery Miller ◽  
Andrzej Pelc

Broadcast is one of the fundamental network communication primitives. One node of a network, called the s ource, has a message that has to be learned by all other nodes. We consider broadcast in radio networks, modeled as simple undirected connected graphs with a distinguished source. Nodes communicate in synchronous rounds. In each round, a node can either transmit a message to all its neighbours, or stay silent and listen. At the receiving end, a node v hears a message from a neighbour w in a given round if v listens in this round and if w is its only neighbour that transmits in this round. If more than one neighbour of a node v transmits in a given round, we say that a c ollision occurs at v . We do not assume collision detection: in case of a collision, node v does not hear anything (except the background noise that it also hears when no neighbour transmits). We are interested in the feasibility of deterministic broadcast in radio networks. If nodes of the network do not have any labels, deterministic broadcast is impossible even in the four-cycle. On the other hand, if all nodes have distinct labels, then broadcast can be carried out, e.g., in a round-robin fashion, and hence O (log n )-bit labels are sufficient for this task in n -node networks. In fact, O (log Δ)-bit labels, where Δ is the maximum degree, are enough to broadcast successfully. Hence, it is natural to ask if very short labels are sufficient for broadcast. Our main result is a positive answer to this question. We show that every radio network can be labeled using 2 bits in such a way that broadcast can be accomplished by some universal deterministic algorithm that does not know the network topology nor any bound on its size. Moreover, at the expense of an extra bit in the labels, we can get the following additional strong property of our algorithm: there exists a common round in which all nodes know that broadcast has been completed. Finally, we show that 3-bit labels are also sufficient to solve both versions of broadcast in the case where it is not known a priori which node is the source.

2019 ◽  
Vol 10 (1) ◽  
pp. 1-18
Author(s):  
Prince Semba Yawada ◽  
Mesmin J. Mbyamm Kiki ◽  
Mai Trung Dong

The effective design of a cognitive radio network must take into account economic and technical aspects. This article presents a commercial formulation of the spectrum by the primary operators who decide to sell a part of their spectrum to a group of cognitive users in order to earn money and to promote the efficient use of the spectrum. Three systems of spectrum pricing are compared and suggested, such as the cooperative price based on the optimization of the profits, the market equilibrium, and the competitive prices focused on the competition of Bertrand. The Bertrand model examines the influences of certain parameters of the system such as the quality of the channel based on the Nash equilibrium and the substitutability of the spectrum. The differences in the various aspects of these systems of pricing are presented through the graphs. The authors note through the obtained result that the profit of the primary operator depends not only on the demand quantity of the spectrum but also on the behavior of the primary operators.


Author(s):  
G Shine Let ◽  
G Josemin Bala ◽  
W. Magdalene

Scarce wireless resources, lead to development of cognitive radio network as a solution to unlicensed users communication in the licensed frequency band. In response to the behavior of licensed users communication, unlicensed users communication need to change from one frequency band to another band. In this communication paradigm, the performance of unlicensed users transmission control protocol gets degraded due to the features of cognitive radio network. To overcome this, several authors suggested quite a few modifications in the existing wireless transport protocol for cognitive radio network environment. This paper gives an overview of different transport protocols used for unlicensed users’ communication in cognitive radio networks


Cognitive Radio (CR) is a technology that promises to solve the data transmission problem by allowing secondary users to coexist with primary user without causing any interference to the communication. It means to improve the usage of the radio assets to improve the throughput. Despite the fact that the operational parts of CR are being investigated broadly, its security viewpoints have increased little consideration. In this work, present a CRN architecture , Different Protocol, with complete rundown of major known security dangers and assaults inside a Cognitive Radio Network (CRN). Our goal in this paper is to dissect the distinctive security issues of the primary ongoing advancements of Cognitive Radio Networks with proper resource allocation to improve the throughput.


Author(s):  
Srinivasa R K ◽  
Hemantha Kumar A.R2

Scarce wireless resources, lead to development of cognitive radio network as a solution to unlicensed users communication in the licensed frequency band. In response to the behavior of licensed users communication, unlicensed users communication need to change from one frequency band to another band. In this communication paradigm, the performance of unlicensed users transmission control protocol gets degraded due to the features of cognitive radio network. To overcome this, several authors suggested quite a few modifications in the existing wireless transport protocol for cognitive radio network environment. This paper gives an overview of different transport protocols used for unlicensed users’ communication in cognitive radio networks.


2019 ◽  
Vol 29 (3) ◽  
pp. 26-32
Author(s):  
D. A. Kiba ◽  
A. S. Gudim ◽  
N. N. Liubushkina ◽  
S. G. Marushchenko

The paper covers questions related to the creation of the comprehensive device designed for long-term autonomous operations as part of the radio networks for various purposes in short-wave bands. Such radio networks are intended for remote monitoring and control over facilities at distances of hundreds and thousands of kilometres. The device and features of functioning of autonomous nodes in short-wave radio networks are based on daily and seasonal characteristics of distribution of radio waves, operation under conditions of self-provision with electricity and in areas of harsh climate, as well as on impossibility of their timely repair and maintenance. The authors have proposed solutions to the issue of a reliable communication channel using advanced low-energy types of angle modulation with low-value signal-to-noise ratios and the choice of the best frequency for a given time of the day for specific nodes. There is an overview of issues related to the choice of an antenna type for the autonomous radio network node, taking into account changes of working ranges. The issue of power supply to the radio network node is solved by applying the combination of a photovoltaic panel and wind generator working from a frost-resistant battery. Thermal modes for electronic equipment are provided through the use of a thermostatically controlled container. Authors have presented a possible architecture for the short-wave range radio network node. The study results include advice for developers of autonomous nodes of shortwave radio networks.


2021 ◽  
Author(s):  
Nikhil Marriwala ◽  
Himanshu Punj ◽  
Sunita Panda ◽  
Inderjeet Kaur ◽  
Deepak Rathore

Abstract This is the era of Intelligent cognitive radio network technology that provides the available spectrum with efficient utilization. Cognitive Radio technology must promise to allow interference-free spectrum access by users. The paper discusses the several attacks and motives of attacks. The authentication mechanism role to prevent the attacks for hassle-free spectrum utilization is demonstrated. In this paper, resolving the cognitive network security issues by the authentication mechanism and the methods and need of authentication is discussed. This paper addresses the research challenges in the way of securing the cognitive radio network and countermeasures in CRN security strategies. Cognitive radio is an empowering innovation that guarantees to achieve spectrum utilization. In cognitive radio networks, several security threats affect the process of cognitive radio. Spectrum sensing data falsification (SSDF) attack is most disruptive in which the malicious users degrade the decision-making process by sending the false sensing reports to data fusion centres thus preventing honest users from utilizing the spectrum. Hence, security is a very important issue in cognitive radio networks that needs to be addressed for proper utilization of available spectrum by the users. Cognitive radio technology must promise secure spectrum dynamic access to users. In this paper, to counter the SSDF attack, the trust-based security mechanism is demonstrated to authenticate the honest users and it is observed that the proposed framework in the MATLAB environment is efficient and able to detect malicious users. Cognitive radio technology is the strategy applied to the spectrum to make it efficient for wireless communication. The strategy is an intelligent way to access the spectrum as it can learn its environment and make decisions by easy adaptation of operating parameters. The multiple nodes scenario is a good perspective. Software-defined radio is an essential component of cognitive radio Here, secondary users can access the spectrum to primary users whenever their vacant spectrum is available. The initial step is to sense the spectrum available further steps are spectrum decision making, spectrum management, and spectrum mobility. The network is vulnerable to various attacks on spectrum sensing and policy protocols which lead to disturbing functionality of cognitive radio technology. The defence mechanism based on public-key cryptography is proposed in which PU is authenticated by appending signature provided to PU signal. Authentication with a tag to the primary users is another perspective proposed. CRN technology should provide integrity, confidentiality and authenticity to the users.


2021 ◽  
Vol 24 (3) ◽  
pp. 207-221
Author(s):  
Kamil Khadiev ◽  
Vladislav Remidovskii

We study algorithms for solving the problem of assembling a text (long string) from a dictionary (a sequence of small strings). The problem has an application in bioinformatics and has a connection with the sequence assembly method for reconstructing a long deoxyribonucleic-acid (DNA) sequence from small fragments. The problem is assembling a string t of length n from strings s1,...,sm. Firstly, we provide a classical (randomized) algorithm with running time Õ(nL0.5 + L) where L is the sum of lengths of s1,...,sm. Secondly, we provide a quantum algorithm with running time Õ(nL0.25 + √mL). Thirdly, we show the lower bound for a classical (randomized or deterministic) algorithm that is Ω(n+L). So, we obtain the quadratic quantum speed-up with respect to the parameter L; and our quantum algorithm have smaller running time comparing to any classical (randomized or deterministic) algorithm in the case of non-constant length of strings in the dictionary.


Sign in / Sign up

Export Citation Format

Share Document