scholarly journals A switch in time

2021 ◽  
Vol 64 (10) ◽  
pp. 13-15
Author(s):  
Chris Edwards
Keyword(s):  

The introduction of the nanosheet transistor is just one step in the continuing attempt to stick to the spirit of Moore's Law.

Author(s):  
David Segal

Chapter 3 highlights the critical role materials have in the development of digital computers. It traces developments from the cat’s whisker to valves through to relays and transistors. Accounts are given for transistors and the manufacture of integrated circuits (silicon chips) by use of photolithography. Future potential computing techniques, namely quantum computing and the DNA computer, are covered. The history of computability and Moore’s Law are discussed.


Author(s):  
Daniel Pargman ◽  
Aksel Biørn-Hansen ◽  
Elina Eriksson ◽  
Jarmo Laaksolahti ◽  
Markus Robèrt
Keyword(s):  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Prasanna Date ◽  
Davis Arthur ◽  
Lauren Pusey-Nazzaro

AbstractTraining machine learning models on classical computers is usually a time and compute intensive process. With Moore’s law nearing its inevitable end and an ever-increasing demand for large-scale data analysis using machine learning, we must leverage non-conventional computing paradigms like quantum computing to train machine learning models efficiently. Adiabatic quantum computers can approximately solve NP-hard problems, such as the quadratic unconstrained binary optimization (QUBO), faster than classical computers. Since many machine learning problems are also NP-hard, we believe adiabatic quantum computers might be instrumental in training machine learning models efficiently in the post Moore’s law era. In order to solve problems on adiabatic quantum computers, they must be formulated as QUBO problems, which is very challenging. In this paper, we formulate the training problems of three machine learning models—linear regression, support vector machine (SVM) and balanced k-means clustering—as QUBO problems, making them conducive to be trained on adiabatic quantum computers. We also analyze the computational complexities of our formulations and compare them to corresponding state-of-the-art classical approaches. We show that the time and space complexities of our formulations are better (in case of SVM and balanced k-means clustering) or equivalent (in case of linear regression) to their classical counterparts.


2015 ◽  
Vol 59 (1) ◽  
pp. 33-35 ◽  
Author(s):  
Michael A. Cusumano ◽  
David B. Yoffie
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document