KOMPOS: Connecting Causal Knots in Large Nonlinear Time Series with Non-Parametric Regression Splines

2021 ◽  
Vol 12 (5) ◽  
pp. 1-27
Author(s):  
Georgios Koutroulis ◽  
Leo Botler ◽  
Belgin Mutlu ◽  
Konrad Diwold ◽  
Kay Römer ◽  
...  

Recovering causality from copious time series data beyond mere correlations has been an important contributing factor in numerous scientific fields. Most existing works assume linearity in the data that may not comply with many real-world scenarios. Moreover, it is usually not sufficient to solely infer the causal relationships. Identifying the correct time delay of cause-effect is extremely vital for further insight and effective policies in inter-disciplinary domains. To bridge this gap, we propose KOMPOS, a novel algorithmic framework that combines a powerful concept from causal discovery of additive noise models with graphical ones. We primarily build our structural causal model from multivariate adaptive regression splines with inherent additive local nonlinearities, which render the underlying causal structure more easily identifiable. In contrast to other methods, our approach is not restricted to Gaussian or non-Gaussian noise due to the non-parametric attribute of the regression method. We conduct extensive experiments on both synthetic and real-world datasets, demonstrating the superiority of the proposed algorithm over existing causal discovery methods, especially for the challenging cases of autocorrelated and non-stationary time series.

2021 ◽  
Vol 3 (1) ◽  
Author(s):  
Hitoshi Iuchi ◽  
Michiaki Hamada

Abstract Time-course experiments using parallel sequencers have the potential to uncover gradual changes in cells over time that cannot be observed in a two-point comparison. An essential step in time-series data analysis is the identification of temporal differentially expressed genes (TEGs) under two conditions (e.g. control versus case). Model-based approaches, which are typical TEG detection methods, often set one parameter (e.g. degree or degree of freedom) for one dataset. This approach risks modeling of linearly increasing genes with higher-order functions, or fitting of cyclic gene expression with linear functions, thereby leading to false positives/negatives. Here, we present a Jonckheere–Terpstra–Kendall (JTK)-based non-parametric algorithm for TEG detection. Benchmarks, using simulation data, show that the JTK-based approach outperforms existing methods, especially in long time-series experiments. Additionally, application of JTK in the analysis of time-series RNA-seq data from seven tissue types, across developmental stages in mouse and rat, suggested that the wave pattern contributes to the TEG identification of JTK, not the difference in expression levels. This result suggests that JTK is a suitable algorithm when focusing on expression patterns over time rather than expression levels, such as comparisons between different species. These results show that JTK is an excellent candidate for TEG detection.


2016 ◽  
Vol 55 (2) ◽  
pp. 47-58
Author(s):  
Nooreen Mujahid ◽  
Azeema Begum ◽  
Muhammad Noman

This paper explores the relationship between export growth and economic growth in the case of Pakistan by employing time series data for the period 1971- 2013. This study has incorporated variables like GDP (Gross Domestic Product) exports, imports and Foreign Direct Investment (FDI). We have applied ARDL to co-integration and Error Correction Model (ECM). The study provides the evidence of stationary time series variables, the existence of the long - run relationship between them, and the result of ECM revealed short rum equilibrium adjustment. Pakistan has many options for enhancing the export of the country. There is a dire need to minimize trade barriers and restrictions such as import and export quotas. Government of Pakistan had introduced Structural Reforms for liberalization, privatization and de-regulation which will actually shifted the trend of trade at a significant level in the end of 1980s. Low levels of interest rate can help exportable industries in which investments are needed to promote and enhance the exports. Stable exchange rate is the first and the best policy option for increasing the export and managing the imports. There is a cause and effect relationship between exchange rate and FDI. Pakistan has to immediately find the policies and processes that support logistics and facilitates trade.


Author(s):  
Heni Kusdarwati ◽  
Samingun Handoyo

This paper proposes and examines the performance of a hybrid model called the wavelet radial bases function neural networks (WRBFNN). The model will be compared its performance with the wavelet feed forward neural networks (WFFN model by developing a prediction or forecasting system that considers two types of input formats: input9 and input17, and also considers 4 types of non-stationary time series data. The MODWT transform is used to generate wavelet and smooth coefficients, in which several elements of both coefficients are chosen in a particular way to serve as inputs to the NN model in both RBFNN and FFNN models. The performance of both WRBFNN and WFFNN models is evaluated by using MAPE and MSE value indicators, while the computation process of the two models is compared using two indicators, many epoch, and length of training. In stationary benchmark data, all models have a performance with very high accuracy. The WRBFNN9 model is the most superior model in nonstationary data containing linear trend elements, while the WFFNN17 model performs best on non-stationary data with the non-linear trend and seasonal elements. In terms of speed in computing, the WRBFNN model is superior with a much smaller number of epochs and much shorter training time.


2021 ◽  
Vol 27 (1) ◽  
pp. 55-60
Author(s):  
Sampson Twumasi-Ankrah ◽  
Simon Kojo Appiah ◽  
Doris Arthur ◽  
Wilhemina Adoma Pels ◽  
Jonathan Kwaku Afriyie ◽  
...  

This study examined the performance of six outlier detection techniques using a non-stationary time series dataset. Two key issues were of interest. Scenario one was the method that could correctly detect the number of outliers introduced into the dataset whiles scenario two was to find the technique that would over detect the number of outliers introduced into the dataset, when a dataset contains only extreme maxima values, extreme minima values or both. Air passenger dataset was used with different outliers or extreme values ranging from 1 to 10 and 40. The six outlier detection techniques used in this study were Mahalanobis distance, depth-based, robust kernel-based outlier factor (RKOF), generalized dispersion, Kth nearest neighbors distance (KNND), and principal component (PC) methods. When detecting extreme maxima, the Mahalanobis and the principal component methods performed better in correctly detecting outliers in the dataset. Also, the Mahalanobis method could identify more outliers than the others, making it the "best" method for the extreme minima category. The kth nearest neighbor distance method was the "best" method for not over-detecting the number of outliers for extreme minima. However, the Mahalanobis distance and the principal component methods were the "best" performed methods for not over-detecting the number of outliers for the extreme maxima category. Therefore, the Mahalanobis outlier detection technique is recommended for detecting outlier in nonstationary time series data.


2020 ◽  
Vol 34 (04) ◽  
pp. 4683-4690 ◽  
Author(s):  
Shuheng Li ◽  
Dezhi Hong ◽  
Hongning Wang

Smart Building Technologies hold promise for better livability for residents and lower energy footprints. Yet, the rollout of these technologies, from demand response controls to fault detection and diagnosis, significantly lags behind and is impeded by the current practice of manual identification of sensing point relationships, e.g., how equipment is connected or which sensors are co-located in the same space. This manual process is still error-prone, albeit costly and laborious.We study relation inference among sensor time series. Our key insight is that, as equipment is connected or sensors co-locate in the same physical environment, they are affected by the same real-world events, e.g., a fan turning on or a person entering the room, thus exhibiting correlated changes in their time series data. To this end, we develop a deep metric learning solution that first converts the primitive sensor time series to the frequency domain, and then optimizes a representation of sensors that encodes their relations. Built upon the learned representation, our solution pinpoints the relationships among sensors via solving a combinatorial optimization problem. Extensive experiments on real-world buildings demonstrate the effectiveness of our solution.


Stats ◽  
2019 ◽  
Vol 2 (1) ◽  
pp. 55-69 ◽  
Author(s):  
Gen Sakoda ◽  
Hideki Takayasu ◽  
Misako Takayasu

We propose a parameter estimation method for non-stationary Poisson time series with the abnormal fluctuation scaling, known as Taylor’s law. By introducing the effect of Taylor’s fluctuation scaling into the State Space Model with the Particle Filter, the underlying Poisson parameter’s time evolution is estimated correctly from given non-stationary time series data with abnormally large fluctuations. We also developed a discontinuity detection method which enables tracking the Poisson parameter even for time series including sudden discontinuous jumps. As an example of application of this new general method, we analyzed Point-of-Sales data in convenience stores to estimate change of probability of purchase of commodities under fluctuating number of potential customers. The effectiveness of our method for Poisson time series with non-stationarity, large discontinuities and Taylor’s fluctuation scaling is verified by artificial and actual time series.


Sign in / Sign up

Export Citation Format

Share Document