Construction of Personalized Recommendation System of University Library Based on SOM Neural Network

2021 ◽  
Author(s):  
Yuan Liu
2022 ◽  
Vol 2022 ◽  
pp. 1-12
Author(s):  
Huazhen Liu ◽  
Wei Wang ◽  
Yihan Zhang ◽  
Renqian Gu ◽  
Yaqi Hao

Explicit feedback and implicit feedback are two important types of heterogeneous data for constructing a recommendation system. The combination of the two can effectively improve the performance of the recommendation system. However, most of the current deep learning recommendation models fail to fully exploit the complementary advantages of two types of data combined and usually only use binary implicit feedback data. Thus, this paper proposes a neural matrix factorization recommendation algorithm (EINMF) based on explicit-implicit feedback. First, neural network is used to learn nonlinear feature of explicit-implicit feedback of user-item interaction. Second, combined with the traditional matrix factorization, explicit feedback is used to accurately reflect the explicit preference and the potential preferences of users to build a recommendation model; a new loss function is designed based on explicit-implicit feedback to obtain the best parameters through the neural network training to predict the preference of users for items; finally, according to prediction results, personalized recommendation list is pushed to the user. The feasibility, validity, and robustness are fully demonstrated in comparison with multiple baseline models on two real datasets.


2014 ◽  
Vol 998-999 ◽  
pp. 1261-1265 ◽  
Author(s):  
Cheng Yi ◽  
Ying Xia ◽  
Zhi Yong Zhang

It expounds the big data and the relevant theoretical knowledge of big data mining, In view of the lack of effective analysis of the data resource access in delivery service of university library, this paper designs the personalized recommendation system service model of university library, with clustering analysis and association rules theory as the foundation of technology. And it introduces in detail how to cluster according to the user's attribute characteristics and how to introduce minimum support to opti-mize on the basis of the classical association rules algorithm. Experiments show that the improved algorithm can improves the utilization of library resources.


PLoS ONE ◽  
2020 ◽  
Vol 15 (12) ◽  
pp. e0240656
Author(s):  
Meng Wang

Recently, more personalized travel methods have emerged in the tourism industry, such as individual travel and self-guided travel. The service models of traditional tourism limit the diversity of service options and cannot fully meet the individual needs of tourists anymore. The aim is to integrate sparse tourism information on the Internet, thereby providing more convenient, faster, and more personalized tourism services. Based on the shortcomings of the traditional tourism recommendation system, a deep learning-based classification processing method of tourism product information is proposed. This method uses word embedding in the data preprocessing stage. The Convolutional Neural Network (CNN) is used to process review information of users and tourism service items. The Deep Neural Network (DNN) is used to process the necessary information of users and tourism service items. Also, factorization machine technology is used to learn the interaction between the extracted features to improve the prediction model. The results show that the proposed model can maintain an excellent precision of 64.2% when generating personalized recommendation lists for users. The sensitivity and accuracy of the recommendation list are better than other algorithms. By adding DNN, the word embedding method, and the factorization machine model, the precision is improved by 30%, 33.3%, and 40%, respectively. The model accuracy is the highest with 40 hidden factors, 100 convolutions, and a 100+50 combination hidden layer. Compared with traditional methods, the proposed algorithm can provide users with personalized travel products more accurately in personalized travel recommendations. The results have enriched and developed the theory of tourism service supply chain, providing a reference for constructing a personalized tourism service system.


2020 ◽  
Vol 2020 ◽  
pp. 1-9
Author(s):  
Jun Zhao ◽  
Xumei Chen

An intelligent evaluation method is presented to analyze the competitiveness of airlines. From the perspective of safety, service, and normality, we establish the competitiveness indexes of traffic rights and the standard sample base. The self-organizing mapping (SOM) neural network is utilized to self-organize and self-learn the samples in the state of no supervision and prior knowledge. The training steps of high convergence speed and high clustering accuracy are determined based on the multistep setting. The typical airlines index data are utilized to verify the effect of the self-organizing mapping neural network on the airline competitiveness analysis. The simulation results show that the self-organizing mapping neural network can accurately and effectively classify and evaluate the competitiveness of airlines, and the results have important reference value for the allocation of traffic rights resources.


Sign in / Sign up

Export Citation Format

Share Document