A Virtual Reality Exergame with a Low-cost 3D Motion Tracking for At-Home Post-Stroke Rehabilitation

2021 ◽  
Author(s):  
Julia Tannus de Souza ◽  
Caroline Valentini ◽  
Eduardo Lazaro Martins Naves ◽  
Edgard Afonso Lamounier Jr.
Author(s):  
Alfonso Mastropietro ◽  
Sara Arlati ◽  
Simona Mrakic-Sposta ◽  
Luca Fontana ◽  
Cristina Franchin ◽  
...  

2021 ◽  
Vol 10 (6) ◽  
pp. e57910616143
Author(s):  
Júlia Tannús de Souza ◽  
Eduardo Lázaro Martins Naves ◽  
Angela Abreu Rosa de Sá

Games and virtual reality are new concepts applied to upper limb rehabilitation after stroke. To perform upper limb physiotherapy rehabilitation and restore motor skills through virtual reality resources it is necessary to use an arm tracker, which would be the input of the video game. However, one of the main issues when starting a post-stroke rehabilitation game project is choosing the most suitable gross upper limb motion tracking device. Thus, this article aims to explore the gross upper limb motion tracking devices most commonly used in the scientific literature. To carry out this research, literature searches in English were conducted up to December 2020 in the ACM, PubMed and IEEE Xplore databases. We have selected a total of ninety-five (95) articles. In these studies, we identified the most used gross upper limb motion devices and we classified them into 5 different categories: RGB-D skeletal tracking, RGB object tracking, IR marker tracking, LeapMotion and RGB markerless body tracking. We found that most studies (52%) used RGB-D skeletal tracking. In addition, we found fifteen (15) different commercial systems or tracking devices and the most used was Kinect® (47% of all studies). However, it was not possible to generalize whether one device is better than the other. Although the amount of research in this area has increased significantly in recent years, additional studies are still needed to quantify the potential of the use of gross upper limb motion tracking devices in rehabilitation with games in post-stroke treatment.


2021 ◽  
Vol 61 (1) ◽  
Author(s):  
Hanne Huygelier ◽  
Emily Mattheus ◽  
Vero Vanden Abeele ◽  
Raymond Van Ee ◽  
Céline R. Gillebert

2018 ◽  
pp. 1377-1392
Author(s):  
Yogendra Patil ◽  
Guilherme Galdino Siqueira ◽  
Iara Brandao ◽  
Fei Hu

Stroke rehabilitation techniques have gathered an immense attention due to the addition of virtual reality environment for rehabilitation purposes. Current techniques involve ideas such as imitating various stroke rehabilitation exercises in virtual world. This makes rehabilitation process more attractive as compared to conventional methods and motivates the patient to continue the therapy. However, most of the virtual reality based stroke rehabilitation studies focus on patient performing sedentary rehabilitation exercises. In this chapter, we introduce our virtual reality based post stroke rehabilitation system that allows a post stroke patient to perform dynamic exercises. With the introduction of our system, we hope to increase post stroke patient's ability to perform their daily routine exercises independently. Our discussion in this chapter is mainly centered around collaboration of rehabilitation system with virtual reality software. We also detail the design process of our modern user interface for collecting useful data during rehabilitation. A simple experiment is carried out to validate the visibility of our system.


Author(s):  
Gustavo R. P. Esteves ◽  
Bruno A. M. Miranda ◽  
André F. P. Aleixo ◽  
Malki-çedheq B. C. Silva ◽  
Marco A. B. Rodrigues

Medicina ◽  
2019 ◽  
Vol 55 (4) ◽  
pp. 98 ◽  
Author(s):  
Adomavičienė ◽  
Daunoravičienė ◽  
Kubilius ◽  
Varžaitytė ◽  
Raistenskis

Background: New technologies to improve post-stroke rehabilitation outcomes are of great interest and have a positive impact on functional, motor, and cognitive recovery. Identifying the most effective rehabilitation intervention is a recognized priority for stroke research and provides an opportunity to achieve a more desirable effect. Objective: The objective is to verify the effect of new technologies on motor outcomes of the upper limbs, functional state, and cognitive functions in post-stroke rehabilitation. Methods: Forty two post-stroke patients (8.69 ± 4.27 weeks after stroke onset) were involved in the experimental study during inpatient rehabilitation. Patients were randomly divided into two groups: conventional programs were combined with the Armeo Spring robot-assisted trainer (Armeo group; n = 17) and the Kinect-based system (Kinect group; n = 25). The duration of sessions with the new technological devices was 45 min/day (10 sessions in total). Functional recovery was compared among groups using the Functional Independence Measure (FIM), and upper limbs’ motor function recovery was compared using the Fugl–Meyer Assessment Upper Extremity (FMA-UE), Modified Ashworth Scale (MAS), Hand grip strength (dynamometry), Hand Tapping test (HTT), Box and Block Test (BBT), and kinematic measures (active Range Of Motion (ROM)), while cognitive functions were assessed by the MMSE (Mini-Mental State Examination), ACE-R (Addenbrooke’s Cognitive Examination-Revised), and HAD (Hospital Anxiety and Depression Scale) scores. Results: Functional independence did not show meaningful differences in scores between technologies (p > 0.05), though abilities of self-care were significantly higher after Kinect-based training (p < 0.05). The upper limbs’ kinematics demonstrated higher functional recovery after robot training: decreased muscle tone, improved shoulder and elbow ROMs, hand dexterity, and grip strength (p < 0.05). Besides, virtual reality games involve more arm rotation and performing wider movements. Both new technologies caused an increase in overall global cognitive changes, but visual constructive abilities (attention, memory, visuospatial abilities, and complex commands) were statistically higher after robotic therapy. Furthermore, decreased anxiety level was observed after virtual reality therapy (p < 0.05). Conclusions: Our study displays that even a short-term, two-week training program with new technologies had a positive effect and significantly recovered post-strokes functional level in self-care, upper limb motor ability (dexterity and movements, grip strength, kinematic data), visual constructive abilities (attention, memory, visuospatial abilities, and complex commands) and decreased anxiety level.


Author(s):  
Daniele Regazzoni ◽  
Andrea Vitali ◽  
Caterina Rizzi

Abstract In the last years, the advent of innovative technologies for tracking human motions is increasing the interest of physicians and physiotherapist, who would like to introduce new instruments for a more objective assessment of the rehabilitation processes. At present, many motion tracking systems have been developed and their ease of use and low-cost may represent the key aspects for which these systems could be really adopted both in rehabilitation centers and in rehabilitation programs at home. Several research studies confirmed the importance of continuing rehabilitation programs at home with the aim to maintain patients’ health condition at a suitable level for daily life activities. Physicians and physiotherapists need methods and tools, which can be simply adaptable for each type of patients’ category and type of rehabilitation according to the assessed pathology. For achieving this need, the technology has to be suitable for both the patient side and medical personnel side. The most suitable technology for the patients are motion tracking devices which can be used through traditional IT, such as laptops, smartphones and tablets. Also for medical personnel the ease of use is very important, physicians would like to check the patient’s rehab exercises according to their medical knowledge by exploiting daily life technology. This research work investigates on which are the best user-friendly programming tools and low-cost technology for 3D hand and finger tracking for the development of a serious game for rehabilitation exercises. The tasks are designed according to physiotherapists’ recommendations, in order to be customizable for any single user. The following sections will describe the method, the tools adopted, and the application developed.


Sign in / Sign up

Export Citation Format

Share Document