Accident detection and road monitoring in real time using deep learning and lane detection algorithms

2021 ◽  
Author(s):  
Shehab Eldeen Ayman Mounir ◽  
Walid Hussein ◽  
Omar H. karam
Author(s):  
Vibhavari B Rao

The crime rates today can inevitably put a civilian's life in danger. While consistent efforts are being made to alleviate crime, there is also a dire need to create a smart and proactive surveillance system. Our project implements a smart surveillance system that would alert the authorities in real-time when a crime is being committed. During armed robberies and hostage situations, most often, the police cannot reach the place on time to prevent it from happening, owing to the lag in communication between the informants of the crime scene and the police. We propose an object detection model that implements deep learning algorithms to detect objects of violence such as pistols, knives, rifles from video surveillance footage, and in turn send real-time alerts to the authorities. There are a number of object detection algorithms being developed, each being evaluated under the performance metric mAP. On implementing Faster R-CNN with ResNet 101 architecture we found the mAP score to be about 91%. However, the downside to this is the excessive training and inferencing time it incurs. On the other hand, YOLOv5 architecture resulted in a model that performed very well in terms of speed. Its training speed was found to be 0.012 s / image during training but naturally, the accuracy was not as high as Faster R-CNN. With good computer architecture, it can run at about 40 fps. Thus, there is a tradeoff between speed and accuracy and it's important to strike a balance. We use transfer learning to improve accuracy by training the model on our custom dataset. This project can be deployed on any generic CCTV camera by setting up a live RTSP (real-time streaming protocol) and streaming the footage on a laptop or desktop where the deep learning model is being run.


Sensors ◽  
2019 ◽  
Vol 19 (14) ◽  
pp. 3166 ◽  
Author(s):  
Cao ◽  
Song ◽  
Song ◽  
Xiao ◽  
Peng

Lane detection is an important foundation in the development of intelligent vehicles. To address problems such as low detection accuracy of traditional methods and poor real-time performance of deep learning-based methodologies, a lane detection algorithm for intelligent vehicles in complex road conditions and dynamic environments was proposed. Firstly, converting the distorted image and using the superposition threshold algorithm for edge detection, an aerial view of the lane was obtained via region of interest extraction and inverse perspective transformation. Secondly, the random sample consensus algorithm was adopted to fit the curves of lane lines based on the third-order B-spline curve model, and fitting evaluation and curvature radius calculation were then carried out on the curve. Lastly, by using the road driving video under complex road conditions and the Tusimple dataset, simulation test experiments for lane detection algorithm were performed. The experimental results show that the average detection accuracy based on road driving video reached 98.49%, and the average processing time reached 21.5 ms. The average detection accuracy based on the Tusimple dataset reached 98.42%, and the average processing time reached 22.2 ms. Compared with traditional methods and deep learning-based methodologies, this lane detection algorithm had excellent accuracy and real-time performance, a high detection efficiency and a strong anti-interference ability. The accurate recognition rate and average processing time were significantly improved. The proposed algorithm is crucial in promoting the technological level of intelligent vehicle driving assistance and conducive to the further improvement of the driving safety of intelligent vehicles.


Author(s):  
Sun-Woo Baek ◽  
Myeong-Jun Kim ◽  
Upendra Suddamalla ◽  
Anthony Wong ◽  
Bang-Hyon Lee ◽  
...  

2020 ◽  
Vol 8 (5) ◽  
pp. 2466-2468

Edge detection is a fundamental operation in many image and video processing applications. It is used in various fields like industries, aerospace, surveillance, medical fields, traffic monitoring system, lane detection, driverless vehicles, crack detection in roads and several other applications. Most of the edge detection algorithms are software based but in real time applications these are not efficient hence in this paper we have explored about Hardware platform. The reason for selecting Sobel edge detection operator is it incorporates both the edge detection and a smoothing operator to provide good edge detection capability in noisy environment. This design uses Verilog HDL language for design and Vivado is used for simulation.


Sensors ◽  
2021 ◽  
Vol 21 (24) ◽  
pp. 8406
Author(s):  
Khaled R. Ahmed

Roads make a huge contribution to the economy and act as a platform for transportation. Potholes in roads are one of the major concerns in transportation infrastructure. A lot of research has proposed using computer vision techniques to automate pothole detection that include a wide range of image processing and object detection algorithms. There is a need to automate the pothole detection process with adequate accuracy and speed and implement the process easily and with low setup cost. In this paper, we have developed efficient deep learning convolution neural networks (CNNs) to detect potholes in real-time with adequate accuracy. To reduce the computational cost and improve the training results, this paper proposes a modified VGG16 (MVGG16) network by removing some convolution layers and using different dilation rates. Moreover, this paper uses the MVGG16 as a backbone network for the Faster R-CNN. In addition, this work compares the performance of YOLOv5 (Large (Yl), Medium (Ym), and Small (Ys)) models with ResNet101 backbone and Faster R-CNN with ResNet50(FPN), VGG16, MobileNetV2, InceptionV3, and MVGG16 backbones. The experimental results show that the Ys model is more applicable for real-time pothole detection because of its speed. In addition, using the MVGG16 network as the backbone of the Faster R-CNN provides better mean precision and shorter inference time than using VGG16, InceptionV3, or MobilNetV2 backbones. The proposed MVGG16 succeeds in balancing the pothole detection accuracy and speed.


Energies ◽  
2020 ◽  
Vol 13 (13) ◽  
pp. 3348
Author(s):  
Zahid Ali Siddiqui ◽  
Unsang Park

Defects in high voltage transmission line components such as cracked insulators, broken wires rope, and corroded power line joints, are very common due to continuous exposure of these components to harsh environmental conditions. Consequently, they pose a great threat to humans and the environment. This paper presents a real-time aerial power line inspection system that aims to detect power line components such as insulators (polymer and porcelain), splitters, damper-weights, power lines, and then analyze these transmission line components for potential defects. The proposed system employs a deep learning-based framework using Jetson TX2 embedded platform for the real-time detection and localization of these components from a live video captured by remote-controlled drone. The detected components are then analyzed using novel defect detection algorithms, presented in this paper. Results show that the proposed detection and localization system is robust against highly cluttered environment, while the proposed defect analyzer outperforms similar researches in terms of defect detection precision and recall. With the help of the proposed system automatic defect analyzing system, manual inspection time can be reduced.


2020 ◽  
Vol 39 (4) ◽  
pp. 5699-5711
Author(s):  
Shirong Long ◽  
Xuekong Zhao

The smart teaching mode overcomes the shortcomings of traditional teaching online and offline, but there are certain deficiencies in the real-time feature extraction of teachers and students. In view of this, this study uses the particle swarm image recognition and deep learning technology to process the intelligent classroom video teaching image and extracts the classroom task features in real time and sends them to the teacher. In order to overcome the shortcomings of the premature convergence of the standard particle swarm optimization algorithm, an improved strategy for multiple particle swarm optimization algorithms is proposed. In order to improve the premature problem in the search performance algorithm of PSO algorithm, this paper combines the algorithm with the useful attributes of other algorithms to improve the particle diversity in the algorithm, enhance the global search ability of the particle, and achieve effective feature extraction. The research indicates that the method proposed in this paper has certain practical effects and can provide theoretical reference for subsequent related research.


2020 ◽  
Vol 9 (3) ◽  
pp. 25-30
Author(s):  
So Yeon Jeon ◽  
Jong Hwa Park ◽  
Sang Byung Youn ◽  
Young Soo Kim ◽  
Yong Sung Lee ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document