Prediction of Biochemical Oxygen Demand Based on VIP-PSO-Elman Model in Wastewater Treatment

2021 ◽  
Author(s):  
Yiqi Liu ◽  
Kaqi Li ◽  
Daoping Huang
2001 ◽  
Vol 44 (11-12) ◽  
pp. 393-398 ◽  
Author(s):  
J.S. Begg ◽  
R.L. Lavigne ◽  
P.L.M. Veneman

Reed beds are an alternative technology wastewater treatment system that mimic the biogeochemical processes inherent in natural wetlands. The purpose of this project was to determine the effectiveness of a reed bed sludge treatment system (RBSTS) in southern New England after a six-year period of operation by examining the concentrations of selected metals in the reed bed sludge biomass and by determining the fate of solids and selected nutrients. Parameters assessed in both the reed bed influent and effluent: total suspended solids, biochemical oxygen demand, nitrate-nitrogen and total phosphorus. In addition, the following metals were studied in the reed bed influent, effluent and Phragmites plant tissue and the sludge core biomass: boron, cadmium, chromium, copper, iron, lead, manganese, molybdenum, nickel, and zinc. The removal efficiencies for sludge dewatering, total suspended solids and biochemical oxygen demand were all over 90%. Nitrate and total phosphorus removal rates were 90% and 80% respectively. Overall metals removal efficient was 87%. Copper was the only metal in the sludge biomass that exceeded the standards set by the Massachusetts Department of Environmental Protection for land disposal of sludge. The highest metal concentrations, for the most part, tended to be in the lower tier of the sludge profile. The exception was boron, which was more concentrated in the middle tier of the sludge profile. The data and results presented in this paper support the notion that reed bed sludge treatment systems and the use of reed beds provide an efficient and cost effective alternative for municipal sludge treatment.


2011 ◽  
Vol 19 (4) ◽  
pp. 1-11 ◽  
Author(s):  
Ali Ghawi ◽  
J. Kriš

Improvement performance of secondary clarifiers by a computational fluid dynamics model Secondary clarifier is one of the most commonly used unit operations in wastewater treatment plants. It is customarily designed to achieve the separation of solids from biologically treated effluents through the clarification of biological solids and the thickening of sludge. As treatment plants receive increasingly high wastewater flows, conventional sedimentation tanks suffer from overloading problems, which result in poor performance. Modification of inlet baffles through the use of an energy dissipating inlet (EDI) was proposed to enhance the performance in the circular clarifiers at the Al-Dewanyia wastewater treatment plant. A 3-dimensional fully mass conservative clarifier model, based on modern computational fluid dynamics theory, was applied to evaluate the proposed tank modification and to estimate the maximum capacity of the existing and modified clarifiers. A Computational Fluid Dynamics (CFD) model was formulated to describe the tank is performance, and design parameters were obtained based on the experimental results. The study revealed that velocity and (suspended solids) SS is a better parameter than TS (total solids), (Biochemical Oxygen Demand) BOD, (Chemical Oxygen Demand) COD to evaluate the performance of sedimentation tanks and that the removal efficiencies of the suspended solids, biochemical oxygen demand, and chemical oxygen demand were higher in the baffle.


2021 ◽  
Vol 894 (1) ◽  
pp. 012032
Author(s):  
A Magfhira ◽  
P Kinasih ◽  
D Salsabila ◽  
E Marchella ◽  
M F Fachrul

Abstract The purpose of writing this scientific paper is to analyze more deeply the management of the quality of the aquatic environment, especially regarding the treatment of domestic wastewater on a household scale. Domestic wastewater treatment with a constructed land system using Air Fern (Azolla pinnata) is expected to reduce concentration parameters such as BOD (Biochemical Oxygen Demand), COD (Chemical Oxygen Demand), and Ammonia. The growth rate of Air Fern (Azolla pinnata) after acclimatization is quite good so that it can reduce BOD (Biochemical Oxygen Demand), COD (Chemical Oxygen Demand) and Ammonia, which are a source of nutrients for plant growth so that it can be used as a promising material for plant growth. It can be used as a promising material for plant growth domestic wastewater treatment. The analysis was carried out using the blended concept, a combination of virtual, online, and laboratory/field activities (offline/outside the network) while still paying attention to health protocols. The priority of this literature study research is to provide input for the government in the form of alternative solutions for managing the quality of the aquatic environment, especially regarding domestic wastewater treatment on a household scale. In addition, this research also supports the international Sustainable Development Goals (SDGs) program: Goal 6: Access to Clean Water and Sanitation” in point 3, namely “Improving water quality by reducing pollution, eliminating waste disposal, and minimizing the disposal of chemicals and hazardous materials, halving the proportion of untreated wastewater and substantially increasing recycling and safe reuse globally”. This research can contribute to appropriate technology in environmental biotechnology, namely wastewater treatment with a system that has simple technology, low cost, energy-saving and is environmentally friendly, which can create a level of hygiene and comfort for the community and maintain environmental sustainability future.


2021 ◽  
Vol 6 (2) ◽  
pp. 361-370
Author(s):  
Asma Khelassi- Sefaoui ◽  
Abderrahmane Khechekhouche ◽  
Manel Zaoui-Djelloul Daouadji ◽  
Hamza Idrici

Wastewater treatment is a process used in several countries, particularly in Algeria. A study on Earth for one month was carried out at the sewage plant of the Sebdou textile complex, Tlemcen, north-west of Algeria. Regular samples gave average values at the outlet such that the water temperature is 22 ° C, the ph 7.43, the biochemical oxygen demand BOD5 is 36.5 mg / l, the chemical oxygen demand COD vary between 100 and 200 mg / l at the exit of the WWTP mg / l and finally suspended solids SS is of the order of 36.2 mg / l. All these values conform with the standards and therefore the treatment plant operates within Algerian standards.


2013 ◽  
Vol 2013 ◽  
pp. 1-9 ◽  
Author(s):  
Jihyun Kwak ◽  
Bumju Khang ◽  
Eunhee Kim ◽  
Hyunook Kim

Determination of 5-d biochemical oxygen demand (BOD5) is the most commonly practiced test to assess the water quality of surface waters and the waste loading. However, BOD5is not a good parameter for the control of water or wastewater treatment processes because of its long test period. It is very difficult to produce consistent and reliable BOD5results without using careful laboratory quality control practices. This study was performed to develop software sensors to predict the BOD5of river water and wastewater. The software sensors were based on the multiple regression analysis using the dissolved organic carbon (DOC) concentration, UV light absorbance at 254 nm, and synchronous fluorescence spectra. River water samples and wastewater treatment plant (WWTP) effluents were collected at 1-hour interval to evaluate the feasibility of the software sensors. In short, the software sensors developed in this study could well predict the BOD5of river water (r=0.78) and for the WWTP effluent (r=0.90).


Sign in / Sign up

Export Citation Format

Share Document