Preadaptation and Naturalization of Nonnative Species: Darwin's Two Fundamental Insights into Species Invasion

2018 ◽  
Vol 69 (1) ◽  
pp. 661-684 ◽  
Author(s):  
Marc W. Cadotte ◽  
Sara E. Campbell ◽  
Shao-peng Li ◽  
Darwin S. Sodhi ◽  
Nicholas E. Mandrak
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Łukasz Głowacki ◽  
Andrzej Kruk ◽  
Tadeusz Penczak

AbstractThe knowledge of biotic and abiotic drivers that put non-native invasive fishes at a disadvantage to native ones is necessary for suppressing invasions, but the knowledge is scarce, particularly when abiotic changes are fast. In this study, we increased this knowledge by an analysis of the biomass of most harmful Prussian carp Carassius gibelio in a river reviving from biological degradation. The species' invasion followed by the invasion's reversal occurred over only two decades and were documented by frequent monitoring of fish biomass and water quality. An initial moderate improvement in water quality was an environmental filter that enabled Prussian carp’s invasion but prevented the expansion of other species. A later substantial improvement stimulated native species’ colonization of the river, and made one rheophil, ide Leuciscus idus, a significant Prussian carp’s replacer. The redundancy analysis (RDA) of the dependence of changes in the biomass of fish species on water quality factors indicated that Prussian carp and ide responded in a significantly opposite way to changes in water quality in the river over the study period. However, the dependence of Prussian carp biomass on ide biomass, as indicated by regression analysis and analysis of species traits, suggests that the ecomorphological similarity of both species might have produced interference competition that contributed to Prussian carp’s decline.


2013 ◽  
Vol 145 (3) ◽  
pp. 338-342 ◽  
Author(s):  
Henry Murillo ◽  
David W.A. Hunt ◽  
Sherah L. VanLaerhoven

AbstractSpecimens of Chrysodeixis chalcites (Esper) (Lepidoptera: Noctuidae) have been found in different municipalities in southwestern Ontario, Canada since 2008. This nonnative species occurs in tomato and green bean crops where it has the potential of becoming an important insect pest.


2012 ◽  
Vol 285 ◽  
pp. 195-203 ◽  
Author(s):  
Christopher M. McGlone ◽  
Michael T. Stoddard ◽  
Judith D. Springer ◽  
Mark L. Daniels ◽  
Peter Z. Fulé ◽  
...  

2014 ◽  
Vol 7 (1) ◽  
pp. 76-83 ◽  
Author(s):  
Rachel L. Odom ◽  
Joshua A. Solomon ◽  
Linda J. Walters

AbstractAquarium release is a vector for introducing nonnative species that threatens the ecological integrity of aquatic systems. Following coastal invasions by released aquarium strains of Caulerpa taxifolia, aquarists began using the macroalgal genus Chaetomorpha. Use of Chaetomorpha now exceeds 50% of U.S. aquarium hobbyists we surveyed. Aquarium strains of this macroalgal genus possess broad environmental tolerances, demonstrate high nutrient uptake and growth rates, and reproduce by fragmentation. Although these characteristics make Chaetomorpha a desirable aquarium inhabitant, they may also promote invasive tendencies if the alga is introduced into a natural ecosystem. We sought to proactively mitigate this potential invasion risk by testing algal disposal techniques that serve as responsible alternatives to releasing viable individuals. We tested methods used by aquarium hobbyists—boiling, microwaving, freezing, desiccation, and exposure to freshwater. We determined the minimum durations that these techniques must be used in order to induce mortality in three aquarium purchases of Chaetomorpha. We found that boiling for at least 1 min, microwaving for at least 15 s, or freezing for at least 24 h were sufficient to induce 100% mortality in 1-cm-long fragments and clumps up to 1.5 g. Desiccation required more than 24 h when exposed to air and 6 d for samples kept in closed containers. Freshwater exposure was effective at 6 d. These results indicate that disposal of excess or unwanted Chaetomorpha via garbage (if destined for a landfill) or indoor plumbing (e.g., sinks and toilets) represent safe alternatives to release. Disposal of algal tissue, shipping water, or tank water containing small algal fragments down stormwater drains, however, could introduce this hardy species into favorable conditions that could result in detrimental biological invasions.


Author(s):  
Amy Kathleen Conley ◽  
Matthew D. Schlesinger ◽  
James G. Daley ◽  
Lisa K. Holst ◽  
Timothy G. Howard

Habitat loss, acid precipitation, and nonnative species have drastically reduced the number of Adirondack waterbodies occupied by round whitefish (Prosopium cylindraceum). The goal of this study was to 1) increase the probability of reintroduction success by modeling the suitability of ponds for reintroduction and 2) better understand the effects of different rates of pond reclamation. We created a species distribution model that identified 70 waterbodies that were physically similar to occupied ponds. The most influential variables for describing round whitefish habitat included trophic, temperature, and alkalinity classes; waterbody maximum depth; maximum air temperature; and surrounding soil texture and impervious surface. Next, we simulated population dynamics under a variety of treatment scenarios and compared the probability of complete extirpation using a modified Markov model. Under almost all management strategies, and under pressure from nonnative competitors like that observed in the past 30 years, the number of occupied ponds will decline over the next 100 years. However, restoring one pond every 3 years would result in a 99% chance of round whitefish persistence after 100 years.


Sign in / Sign up

Export Citation Format

Share Document