scholarly journals MHz-Order Surface Acoustic Wave Thruster for Underwater Silent Propulsion

Micromachines ◽  
2020 ◽  
Vol 11 (4) ◽  
pp. 419
Author(s):  
Naiqing Zhang ◽  
Yue Wen ◽  
James Friend

High frequency (MHz-order) surface acoustic waves (SAW) are able to generate intense fluid flow from the attenuation of acoustic radiation in viscous fluids as acoustic streaming. Though such flows are known to produce a force upon the fluid and an equivalent and opposing force upon the object producing the acoustic radiation, there is no convenient method for measuring this force. We describe a new method to accomplish this aim, noting the potential of these devices in providing essentially silent underwater propulsion by virtue of their use of the sound itself to generate fluid momentum flux. Our example employs a 40 MHz SAW device as a pendulum bob while immersed in a fluid, measuring a 1.5 mN propulsion force from an input power of 5 W power to the SAW device. Supporting details regarding the acoustic streaming profile via particle image velocimetry and an associated theoretical model are provided to aid in the determination of the propulsion force knowing the applied power and fluid characteristics. Finally, a simple model is provided to aid the selection of the acoustic device size to maximize the propulsion force per unit device area, a key figure of merit in underwater propulsion devices. Using this model, a maximum force of approximately 10 mN/cm 2 was obtained from 1 W input power using 40 MHz SAW in water and producing a power efficiency of approximately 50%. Given the advantages of this technology in silent propulsion with such large efficiency and propulsion force per unit volume, it seems likely this method will be beneficial in propelling small autonomous submersibles.

Author(s):  
Sebastian Sachs ◽  
Christian Cierpka ◽  
Jörg König

The application of standing surface acoustic waves (sSAW) has enabled the development of many flexible and easily scalable concepts for the fractionation of particle solutions in the field of microfluidic lab-ona-chip devices. In this context, the acoustic radiation force (ARF) is often employed for the targeted manipulation of particle trajectories, whereas acoustically induced flows complicate efficient fractionation in many systems [Sehgal and Kirby (2017)]. Therefore, a characterization of the superimposed fluid motion is essential for the design of such devices. The present work focuses on a structural analysis of the acousticallyexcited flow, both in the center and in the outer regions of the standing wave field. For this, experimental flow measurements were conducted using astigmatism particle tracking velocimetry (APTV) [Cierpka et al. (2010)]. Through multiple approaches, we address the specific challenges for reliable velocity measurements in sSAW due to limited optical access, the influence of the ARF on particle motion, and regions of particle depletion caused by multiple pressure nodes along the channel width and height. Variations in frequency, channel geometry, and electrical power allow for conclusions to be drawn on the formation of a complex, three-dimensional vortex structure at the beginning and end of the sSAW.


Author(s):  
Amgad R. Rezk ◽  
Ofer Manor ◽  
Leslie Y. Yeo ◽  
James R. Friend

Arising from an interplay between capillary, acoustic and intermolecular forces, surface acoustic waves (SAWs) are observed to drive a unique and curious double flow reversal in the spreading of thin films. With a thickness at or less than the submicrometre viscous penetration depth, the film is seen to advance along the SAW propagation direction, and self-similarly over time t 1/4 in the inertial limit. At intermediate film thicknesses, beyond one-fourth the sound wavelength λ ℓ in the liquid, the spreading direction reverses, and the film propagates against the direction of the SAW propagation. The film reverses yet again, once its depth is further increased beyond one SAW wavelength. An unstable thickness region, between λ ℓ /8 and λ ℓ /4, exists from which regions of the film either rapidly grow in thickness to exceed λ ℓ /4 and move against the SAW propagation, consistent with the intermediate thickness films, whereas other regions decrease in thickness below λ ℓ /8 to conserve mass and move along the SAW propagation direction, consistent with the thin submicrometre films.


2020 ◽  
Vol 52 (1) ◽  
pp. 205-234 ◽  
Author(s):  
M. Baudoin ◽  
J.-L. Thomas

Acoustic tweezers powerfully enable the contactless collective or selective manipulation of microscopic objects. Trapping is achieved without pretagging, with forces several orders of magnitude larger than optical tweezers at the same input power, limiting spurious heating and enabling damage-free displacement and orientation of biological samples. In addition, the availability of acoustical coherent sources from kilo- to gigahertz frequencies enables the manipulation of a wide spectrum of particle sizes. After an introduction of the key physical concepts behind fluid and particle manipulation with acoustic radiation pressure and acoustic streaming, we highlight the emergence of specific wave fields, called acoustical vortices, as a means to manipulate particles selectively and in three dimensions with one-sided tweezers. These acoustic vortices can also be used to generate hydrodynamic vortices whose topology is controlled by the topology of the wave. We conclude with an outlook on the field's future directions.


Micromachines ◽  
2019 ◽  
Vol 10 (1) ◽  
pp. 52 ◽  
Author(s):  
Jin-Chen Hsu ◽  
Chih-Hsun Hsu ◽  
Yeo-Wei Huang

We present a numerical and experimental study of acoustophoretic manipulation in a microfluidic channel using dual-wavelength standing surface acoustic waves (SSAWs) to transport microparticles into different outlets. The SSAW fields were excited by interdigital transducers (IDTs) composed of two different pitches connected in parallel and series on a lithium niobate substrate such that it yielded spatially superimposed and separated dual-wavelength SSAWs, respectively. SSAWs of a singltablee target wavelength can be efficiently excited by giving an RF voltage of frequency determined by the ratio of the velocity of the SAW to the target IDT pitch (i.e., f = cSAW/p). However, the two-pitch IDTs with similar pitches excite, less efficiently, non-target SSAWs with the wavelength associated with the non-target pitch in addition to target SSAWs by giving the target single-frequency RF voltage. As a result, dual-wavelength SSAWs can be formed. Simulated results revealed variations of acoustic pressure fields induced by the dual-wavelength SSAWs and corresponding influences on the particle motion. The acoustic radiation force in the acoustic pressure field was calculated to pinpoint zero-force positions and simulate particle motion trajectories. Then, dual-wavelength SSAW acoustofluidic devices were fabricated in accordance with the simulation results to experimentally demonstrate switching of SSAW fields as a means of transporting particles. The effects of non-target SSAWs on pre-actuating particles were predicted and observed. The study provides the design considerations needed for the fabrication of acoustofluidic devices with IDT-excited multi-wavelength SSAWs for acoustophoresis of microparticles.


Author(s):  
J. Vanneste ◽  
O. Bühler

Acoustic streaming, the generation of mean flow by dissipating acoustic waves, provides a promising method for flow pumping in microfluidic devices. In recent years, several groups have been experimenting with acoustic streaming induced by leaky surface waves: (Rayleigh) surface waves excited in a piezoelectric solid interact with a small volume of fluid where they generate acoustic waves and, as result of the viscous dissipation of these waves, a mean flow. We discuss the computation of the corresponding Lagrangian mean flow, which controls the trajectories of fluid particles and hence the mixing properties of the flows generated by this method. The problem is formulated using the averaged vorticity equation which extracts the dominant balance between wave dissipation and mean-flow dissipation. Particular attention is paid to the thin boundary layer that forms at the solid/liquid interface, where the flow is best computed using matched asymptotics. This leads to an explicit expression for a slip velocity, which includes the effect of the oscillations of the boundary. The Lagrangian mean flow is naturally separated into three contributions: an interior-driven Eulerian mean flow, a boundary-driven Eulerian mean flow and the Stokes drift. A scale analysis indicates that the latter two contributions can be neglected in devices much larger than the acoustic wavelength but need to be taken into account in smaller devices. A simple two-dimensional model of mean flow generation by surface acoustic waves is discussed as an illustration.


2000 ◽  
Vol 10 (03) ◽  
pp. 735-792 ◽  
Author(s):  
IVAN D. AVRAMOV

Since the first successful surface transverse wave (STW) resonator was demonstrated by Bagwell and Bray in 1987, STW resonant devices on temperature stable cut orientations of piezoelectric quartz have enjoyed a spectacular development. The tremendous interest in these devices is based on the fact that, compared to the widely used surface acoustic waves (SAW), the STW acoustic mode features some unique properties which makes it very attractive for low-noise microwave oscillator applications in the 1.0 to 3.0 GHz frequency range in which SAW based or dielectric resonator oscillators (DRO) fail to provide satisfactory performance. These STW properties include: high propagation velocity, material Q-values exceeding three times those of SAW and bulk acoustic waves (BAW) on quartz, low propagation loss, unprecedented 1/f device phase noise, extremely high power handling ability, as well as low aging and low vibration sensitivity. This paper reviews the fundamentals of STW propagation in resonant geometries on rotated Y-cuts of quartz and highlights important design aspects necessary for achieving desired STW resonator performance. Different designs of high- and low-Q, low-loss resonant devices and coupled resonator filters (CRF) in the 1.0 to 2.5 GHz range are characterized and discussed. Design details and data on state-of-the-art STW based fixed frequency and voltage controlled oscillators (VCO) with low phase noise and high power efficiency are presented. Finally, several applications of STW devices in GHz range data transmitters, receivers and sensors are described and discussed.


2019 ◽  
Vol 63 (2) ◽  
pp. 77-84
Author(s):  
Gergely Simon ◽  
Marco A. B. Andrade ◽  
Marc P. Y. Desmulliez ◽  
Mathis O. Riehle ◽  
Anne L. Bernassau

Sorting specific target entities from sample mixtures is commonly used in many macroscale laboratory processing, such as disease diagnosis or treatment. Downscaling of sorting systems enables less laboratory space and fewer quantities of sample and reagent. Such lab-on-a-chip devices can perform separation functions using passive or active sorting methods. Such a method, acoustic sorting, when used in microfluidics, offers contactless, label-free, non-invasive manipulation of target cells or particles and is therefore the topic of active current research. Our phase-modulated sorting technique complements traditional time-of-flight techniques and offers higher sensitivity separation using a periodic signal. By cycling of this periodic signal, the target entities are gradually displaced compared to the background debris, thereby achieving sorting. In this paper, we extend the knowledge on phase-modulated sorting techniques. Firstly, using numerical simulations, we confirm the sorting role of our proposed primary acoustic radiation force within surface wave devices. Secondly, a threefold agreement between analytical, numerical and experimental sorting trajectories is presented.


Sign in / Sign up

Export Citation Format

Share Document