scholarly journals A 50-Year Journey from Phosphate to Autonomous Underwater Vehicles

2020 ◽  
Vol 12 (1) ◽  
pp. 1-22 ◽  
Author(s):  
Mary Jane Perry

This narrative is a personal account of my evolution as a student of phytoplankton and the ocean. Initially I focused on phytoplankton nutrient physiology and uptake, later switching to photosynthetic physiology. Better models of photosynthesis naturally require a better understanding of spectral underwater light fields and absorption coefficients, which precipitated my involvement in the nascent field of bio-optical oceanography. Establishment of the now 34-year-old summer graduate course in ocean optics, which continues to attract students from around the globe, is a legacy of my jumping into optics. The importance of social interactions in advancing science cannot be underestimated; a prime example is how a TGIF gathering led to my immersion in the world of autonomous underwater vehicles for the past two decades of my career. Working with people who you like and respect is also critical; I believe collegial friendship played a major role in the great success of the 2008 North Atlantic Bloom Experiment.

2019 ◽  
Vol 8 (6) ◽  
pp. 461-467
Author(s):  
Thomas Scholz ◽  
Martin Laurenzis ◽  
Frank Christnacher

Abstract Underwater laser-based imaging systems and data-processing techniques matured during the past decade. Active imaging systems can, nowadays, be integrated into platforms like remote-operated vehicles (ROV) or autonomous underwater vehicles (AUV). This article gives an overview of different civil and naval applications in underwater imaging with respect to underwater laser scanning (ULS) and laser gated viewing (LGV). Special emphasis has to be given to the environmental conditions, for example, the influence of the local and seasonal dependence of the turbidity with regard to the optical underwater channel. On the basis of tank and sea experiments, advanced techniques for 3D laser oblique scanning (LOS) and possibilities of contrast enhancements for gated viewing are presented.


Author(s):  
B. Allotta ◽  
R. Costanzi ◽  
F. Mugnai ◽  
M. Reggiannini ◽  
A. Ridolfi ◽  
...  

<p><strong>Abstract.</strong> Autonomous Underwater Vehicles (AUVs), benefiting from significant investments in the past years, are commonly used for military security and offshore Oil&amp;Gas applications. The ARROWS project, aimed at exporting the AUV technology to the field of underwater archaeology, a low-budget research field compared to the previous ones. The paper focuses on the strategy for vehicle coordination adopted within the project, a Search and Inspection (S&amp;I) approach borrowed from the defense field (e.g., mine countermeasure &amp;ndash; MCM) that proved to be an efficient solution also for the main phases of an underwater archaeological mission. The other main novelty aspect is represented by MARTA (MArine Robotic Tool for Archaeology) AUV: it is a modular vehicle easily and quickly reconfigurable developed in the framework of ARROWS according to the project Archaeological Advisory Group (AAG) guidelines. Results from the final demonstration of the project, held in Estonia during Summer 2015, are proposed in the paper as an experimental proof of the validity of the proposed S&amp;I strategy, and MARTA functioning and its adaptability to the mission requirements. Even in its first prototype version, MARTA successfully played the Inspection role within the AUV team, collaborating with a commercial Search AUV. Acoustic and optical data collected during the mission and processed to increase their intelligibility for the human operator are proposed and discussed.</p>


2017 ◽  
Author(s):  
Rachel Kristine Buzeta ◽  
◽  
Pratigya J. Polissar ◽  
Kevin T. Uno ◽  
Samuel R. Phelps
Keyword(s):  

Robotica ◽  
2021 ◽  
pp. 1-27
Author(s):  
Taha Elmokadem ◽  
Andrey V. Savkin

Abstract Unmanned aerial vehicles (UAVs) have become essential tools for exploring, mapping and inspection of unknown three-dimensional (3D) tunnel-like environments which is a very challenging problem. A computationally light navigation algorithm is developed in this paper for quadrotor UAVs to autonomously guide the vehicle through such environments. It uses sensors observations to safely guide the UAV along the tunnel axis while avoiding collisions with its walls. The approach is evaluated using several computer simulations with realistic sensing models and practical implementation with a quadrotor UAV. The proposed method is also applicable to other UAV types and autonomous underwater vehicles.


2021 ◽  
Vol 9 (3) ◽  
pp. 277
Author(s):  
Isaac Segovia Ramírez ◽  
Pedro José Bernalte Sánchez ◽  
Mayorkinos Papaelias ◽  
Fausto Pedro García Márquez

Submarine inspections and surveys require underwater vehicles to operate in deep waters efficiently, safely and reliably. Autonomous Underwater Vehicles employing advanced navigation and control systems present several advantages. Robust control algorithms and novel improvements in positioning and navigation are needed to optimize underwater operations. This paper proposes a new general formulation of this problem together with a basic approach for the management of deep underwater operations. This approach considers the field of view and the operational requirements as a fundamental input in the development of the trajectory in the autonomous guidance system. The constraints and involved variables are also defined, providing more accurate modelling compared with traditional formulations of the positioning system. Different case studies are presented based on commercial underwater cameras/sonars, analysing the influence of the main variables in the measurement process to obtain optimal resolution results. The application of this approach in autonomous underwater operations ensures suitable data acquisition processes according to the payload installed onboard.


Sign in / Sign up

Export Citation Format

Share Document