photosynthetic physiology
Recently Published Documents


TOTAL DOCUMENTS

102
(FIVE YEARS 35)

H-INDEX

24
(FIVE YEARS 3)

Agronomy ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 1805
Author(s):  
Chung-I. Chen ◽  
Kuan-Hung Lin ◽  
Meng-Yuan Huang ◽  
Chih-Kai Yang ◽  
Yu-Hsiu Lin ◽  
...  

Sod culture (SC) and no tillage (NT) are modern orchard management systems, and are two different bases for the sustainable development and production of citrus orchards in Taiwan. However, there is no information about the efficiency of either NT or SC on the photosynthetic physiology of farmed citrus under different seasons and varying light intensities. The objective of this study was to clarify the impacts of SC and NT under eco-friendly farming management on the photosynthetic apparatus of an important plantation citrus species in response to varying light intensities over the seasons. The results showed that Rd (dark respiration rate of CO2), Qy (light quantum yield of CO2), LCP (light compensation point), Amax (maximum net assimilation of CO2), and Fv/Fm values of citrus plants under SC were somewhat higher under NT in the same season, particularly in the fall and in winter. As light intensity increased from 200 to 2000 μmol photon m−2 s−1 PPFD, higher Pn (net photosynthesis rate), Gs (stomatal conductance), ETR (electron transport rate), NPQ (non-photochemical quenching), and Fv/Fm (potential quantum efficiency of PSII) values were observed in spring and summer compared to the fall and winter, and increasing NPQ and decreasing Fv/Fm values were observed in all seasons. Positive and significant correlations were shown between the Pn and Gs under NT and SC in all seasons with all light illuminations, whereas significant and negative relationships were observed between the ETR and NPQ under NT in fall and winter at 1200~2000 PPFD. In short, ETR was useful for non-destructive estimations of Pn and NPQ since these indices were significantly and positively correlated with ETR in citrus leaves exposed to 0~1200 PPFD in all seasons and 1200~2000 PPFD in spring, the fall, and winter, providing a quick means to identify the physiological condition of plants under various seasons and tillages. The precise management of photosynthetic parameters such as ETR in response to light irradiances under varied seasons also provides implications for sustainable citrus production for tillage cropping systems in future higher CO2 and potentially wetter or drier environments. The tillages may hold promise for maximizing the economic efficiency of the growth and development of citrus plants grown in the field.


Plant Science ◽  
2021 ◽  
pp. 111046
Author(s):  
Ying Feng ◽  
Xue Cui ◽  
Hong Shan ◽  
Zhensheng Shi ◽  
Fenghai Li ◽  
...  

2021 ◽  
Vol 8 ◽  
Author(s):  
Nina Schuback ◽  
Philippe D. Tortell ◽  
Ilana Berman-Frank ◽  
Douglas A. Campbell ◽  
Aurea Ciotti ◽  
...  

Phytoplankton photosynthetic physiology can be investigated through single-turnover variable chlorophyll fluorescence (ST-ChlF) approaches, which carry unique potential to autonomously collect data at high spatial and temporal resolution. Over the past decades, significant progress has been made in the development and application of ST-ChlF methods in aquatic ecosystems, and in the interpretation of the resulting observations. At the same time, however, an increasing number of sensor types, sampling protocols, and data processing algorithms have created confusion and uncertainty among potential users, with a growing divergence of practice among different research groups. In this review, we assist the existing and upcoming user community by providing an overview of current approaches and consensus recommendations for the use of ST-ChlF measurements to examine in-situ phytoplankton productivity and photo-physiology. We argue that a consistency of practice and adherence to basic operational and quality control standards is critical to ensuring data inter-comparability. Large datasets of inter-comparable and globally coherent ST-ChlF observations hold the potential to reveal large-scale patterns and trends in phytoplankton photo-physiology, photosynthetic rates and bottom-up controls on primary productivity. As such, they hold great potential to provide invaluable physiological observations on the scales relevant for the development and validation of ecosystem models and remote sensing algorithms.


2021 ◽  
Vol 22 (10) ◽  
pp. 5258
Author(s):  
Bei Liu ◽  
Di Zhang ◽  
Ming Sun ◽  
Manli Li ◽  
Xiqing Ma ◽  
...  

The color of bracts generally turns yellow or black from green during cereal grain development. However, the impact of these phenotypic changes on photosynthetic physiology during black bract formation remains unclear. Two oat cultivars (Avena sativa L.), ‘Triple Crown’ and ‘Qinghai 444’, with yellow and black bracts, respectively, were found to both have green bracts at the heading stage, but started to turn black at the flowering stage and become blackened at the milk stage for ‘Qinghai 444’. Their photosynthetic characteristics were analyzed and compared, and the key genes, proteins and regulatory pathways affecting photosynthetic physiology were determined in ‘Triple Crown’ and ‘Qinghai 444’ bracts. The results show that the actual PSII photochemical efficiency and PSII electron transfer rate of ‘Qinghai 444’ bracts had no significant changes at the heading and milk stages but decreased significantly (p < 0.05) at the flowering stage compared with ‘Triple Crown’. The chlorophyll content decreased, the LHCII involved in the assembly of supercomplexes in the thylakoid membrane was inhibited, and the expression of Lhcb1 and Lhcb5 was downregulated at the flowering stage. During this critical stage, the expression of Bh4 and C4H was upregulated, and the biosynthetic pathway of p-coumaric acid using tyrosine and phenylalanine as precursors was also enhanced. Moreover, the key upregulated genes (CHS, CHI and F3H) of anthocyanin biosynthesis might complement the impaired PSII activity until recovered at the milk stage. These findings provide a new insight into how photosynthesis alters during the process of oat bract color transition to black.


Forests ◽  
2021 ◽  
Vol 12 (5) ◽  
pp. 523
Author(s):  
Haoyun Wang ◽  
Feng Wu ◽  
Min Li ◽  
Xiaokun Zhu ◽  
Changshuang Shi ◽  
...  

Light intensity is a critical factor regulating photosynthetic capacity in plants. However, the effects of varying light intensity on morphological and photoprotective mechanisms in Pinus massoniana seedlings have not been explored in depth, especially those in the first seedling growing season. We measured the growth, photosynthetic physiology, biochemistry, and chlorophyll fluorescence of P. massoniana seedlings at four light gradients: 100% relative irradiance (RI, full sunlight), 70% RI, 50% RI, and 20% RI. The seedling height at 70% RI was 9.27% higher than that at 100% RI. However, seedling height was inhibited under low light intensity; at 20% RI, all seedlings died. The decreasing light intensity inhibited ground diameter growth but increased the height-diameter ratio. The secondary needle emergence rate was 53.4% higher at 70% RI than at 100% RI but was only 2% at 50% RI. The chlorophyll and carotenoid contents increased significantly with decreasing light intensity. The increased Chl b and Car contents promoted the photoreceptor potential of the violet (400~420 nm), blue (440~480 nm), and yellow-orange (597~655 nm) regions in leaves. Among the chlorophyll fluorescence parameters, Fv/Fm, Fv′/Fm′, Y(II), qp, and ETR all reached maximum values at 70% RI but were significantly lower at 50% RI than at 100% RI. However, decreasing the light intensity caused a reduction in NPQ. The 70% RI level increased POD and SOD activity and the contents of osmotic regulation substances and slowed MDA accumulation. Seedlings at 70% RI had a higher growth rate, higher photosynthetic activity and potential, and significantly greater stress resistance than the other seedlings. Therefore, appropriate shading measures were beneficial to the cultivation of vigorous seedlings. Furthermore, spectral reflectance indexes were found to be a suitable tool for monitoring the photosynthetic physiological characteristics, stress resistance characteristics, and growth status of P. massoniana seedlings in real time.


2021 ◽  
Vol 12 ◽  
Author(s):  
Yunyun Chen ◽  
Hongwei Xu ◽  
Ting He ◽  
Runhong Gao ◽  
Guimei Guo ◽  
...  

Polyploids play an important role in the breeding of plant for superior characteristics, and many reports have focused on the effects upon photosynthesis from polyploidization in some plant species recently, yet surprisingly little of this is known for barley. In this study, homozygous diploid and tetraploid plants, derived from microspore culturing of the barley cultivar “H30,” were used to assess differences between them in their cellular, photosynthetic, and transcriptomic characteristics. Our results showed that tetraploid barley has the distinct characteristics of polyploids, namely thicker and heavier leaves, enlarged stomata size or stomatal guard cell size, and more photosynthetic pigments and improved photosynthesis (especially under high light intensity). This enhanced photosynthesis of tetraploid barley was confirmed by several photosynthetic parameters, including net photosynthetic rate (Pn), stomatal conductance (Gs), intercellular CO2 concentration (Ci), transpiration rate (Tr), maximum net photosynthetic rate (Pmax), light saturation point (LSP), maximum RuBP saturated rate carboxylation (Vcmax), and maximum rate of electron transport (Jmax). Transcriptomic analyses revealed that just ~2.3% of all detected genes exhibited differential expression patterns [i.e., differentially expressed genes (DEGs)], and that most of these – 580 of 793 DEGs in total – were upregulated in the tetraploid barley. The follow-up KEGG analysis indicated that the most enriched pathway was related to photosynthesis-antenna proteins, while the downregulation of DEGs was related mainly to the light-harvesting cholorophyII a/b-binding protein (Lhcb1) component, both validated by quantitative PCR (qPCR). Taken together, our integrated analysis of morphology, photosynthetic physiology, and transcriptome provides evidences for understanding of how polyploidization enhances the photosynthetic capacity in tetraploids of barley.


2021 ◽  
Vol 233 ◽  
pp. 01108
Author(s):  
Renyan Liao ◽  
Yinsong Xu

A pot experiment was used to study the effects of different concentrations of salt (100, 200, 300 mmol/L) stress on the photosynthetic physiology and antioxidant enzyme activities of Solanum photeinocarpum. The results showed that NaCl of 100 and 200 mmol/L could significantly improve the contents of chlorophyll a, chlorophyll b and carotenoid in S. photeinocarpum. However, under different concentrations of salt stress, there was no significant difference in the amount of total chlorophyll in S. photeinocarpum. Besides, as the salt stress increased, the net photosynthetic rate, stomatal conductance, CO2 concentration of intercellular and transpiration rate of S. photeinocarpum gradually decreased, when the concentration of NaCl was 300 mmol/L, reached the lowest value. With the increase of salt stress, the POD activity, CAT activity and soluble sugar content of S. photeinocarpum increased first and then decreased, reaching the highest when the concentration of NaCl was 100 mmol/L. Therefore, S. photeinocarpum had a certain salt tolerance, low concentration of NaCl (≤ 200 mmol/L) stress could promote its growth, but high concentration (> 200 mmol/L) could inhibit its growth.


Sign in / Sign up

Export Citation Format

Share Document