Improvement of the Resistance of Titanium Aluminides to Environmental Embrittlement

2013 ◽  
Vol 50 (44) ◽  
pp. 127-141
Author(s):  
P. J. Masset ◽  
F. Bleicher ◽  
L. Bortolotto ◽  
G. Geiger ◽  
A. Kolitsch ◽  
...  
2009 ◽  
Vol 289-292 ◽  
pp. 397-404 ◽  
Author(s):  
Patrick J. Masset ◽  
Mathieu Laurent ◽  
Michael Schütze

Surface modifications with well defined amounts of fluorine have proven to improve significantly the oxidation resistance of titanium aluminides and to offer the potential to decrease the sensibility of TiAl-based alloys against environmental embrittlement. By means of combined EPMA and SEM analyses the formation of an oxide layer on fluorine treated specimens was characterised. The thicknesses of the external oxide layer as well as the oxygen and nitrogen-rich subsurface layer were measured. Their growth kinetics was found to follow a cubic and a parabolic law, respectively. By subtracting the mass variation due to the ingress of oxygen and nitrogen into 2-Ti3Al, underneath the alumina layer, this allowed calculating the true value of the kinetic constant for the growth of a pure alumina layer on titanium aluminides.


1998 ◽  
Vol 4 (S2) ◽  
pp. 528-529
Author(s):  
M. G. Burke ◽  
R. J. Wehrer ◽  
C.M. Brown

Ni-base alloy welds such as EN82H weld metal are frequently employed in nuclear power applications where resistance to corrosion is required. Results of a recently reported study of the mechanical properties of EN82H welds show that this alloy is susceptible to low-temperature (∼100°C) environmental embrittlement (LTEE) in hydrogenated water. LTEE is a manifestation of hydrogen embrittlement in these alloys.1 Recent LTEE tests have demonstrated a beneficial effect of a high-temperature (∼1100°C) anneal and furnace-cool in alleviating the material's susceptibility to LTEE. Understanding the reason for the reduction in LTEE susceptibility requires detailed characterization of the microstructure so that the specific structural and compositional changes that have been induced by the solution-anneal can be identified. This study reports the results of light optical and analytical electron microscopy (AEM) characterization of the microstructures of as-fabricated and as-solution-annealed EN82H welds with the objective of providing insight into the observed LTEE behavior.


1998 ◽  
Vol 552 ◽  
Author(s):  
R. Raban ◽  
L. L. ◽  
T. M.

ABSTRACTPlates of three gamma titanium aluminide alloys have been investment cast with a wide variety of casting conditions designed to influence cooling rates. These alloys include Ti-48Al-2Cr-2Nb, Ti- 47Al-2Cr-2Nb+0.5at%B and Ti-45Al-2Cr-2Nb+0.9at%B. Cooling rates have been estimated with the use of thermal data from casting experiments, along with the UES ProCAST simulation package. Variations in cooling rate significantly influenced the microstructure and tensile properties of all three alloys.


2000 ◽  
Vol 646 ◽  
Author(s):  
Fritz Appel ◽  
Helmut Clemens ◽  
Michael Oehring

ABSTRACTIntermetallic titanium aluminides are one of the few classes of emerging materials that have the potential to be used in demanding high-temperature structural applications whenever specific strength and stiffness are of major concern. However, in order to effectively replace the heavier nickel-base superalloys currently in use, titanium aluminides must combine a wide range of mechanical property capabilities. Advanced alloy designs are tailored for strength, toughness, creep resistance, and environmental stability. Some of these concerns are addressed in the present paper through specific comments on the physical metallurgy and technology of gamma TiAl-base alloys. Particular emphasis is placed on recent developments of TiAl alloys with enhanced high-temperature capability.


2013 ◽  
Vol 16 (1) ◽  
pp. 52-59 ◽  
Author(s):  
Rossen A. Yankov ◽  
Andreas Kolitsch ◽  
Johannes von Borany ◽  
Frans Munnik ◽  
Sibylle Gemming ◽  
...  

2014 ◽  
Vol 783-786 ◽  
pp. 2097-2102 ◽  
Author(s):  
Svea Mayer ◽  
Emanuel Schwaighofer ◽  
Martin Schloffer ◽  
Helmut Clemens

Urgent needs concerning energy efficiency and environmental politics require novel approaches to materials design. One recent example is thereby the implementation of light-weight intermetallic titanium aluminides as structural materials for the application in turbine blades of aero-engines as well as in turbocharger turbine wheels for the next generation of automotive engines. Each production process leads to specific microstructures which can be altered and optimized by thermo-mechanical processing and / or subsequent heat-treatments. To develop sound and sustainable processing routes, knowledge on solidification processes and phase transformation sequences in advanced TiAl alloys is fundamental. Therefore, in-situ diffraction techniques employing synchrotron radiation and neutrons were used for establishing phase fraction diagrams, investigating advanced heat-treatments as well as for optimizing thermo-mechanical processing. Summarizing all results a consistent picture regarding microstructure formation and its impact on mechanical properties in advanced multi-phase TiAl alloys can be given.


Sign in / Sign up

Export Citation Format

Share Document