titanium aluminide alloys
Recently Published Documents


TOTAL DOCUMENTS

109
(FIVE YEARS 9)

H-INDEX

20
(FIVE YEARS 1)

2021 ◽  
Vol 131 ◽  
pp. 107109
Author(s):  
David Wimler ◽  
Janny Lindemann ◽  
Marcel Reith ◽  
Alexander Kirchner ◽  
Melissa Allen ◽  
...  

Materials ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 1030
Author(s):  
Anna Knaislová ◽  
Pavel Novák ◽  
Marcello Cabibbo ◽  
Lucyna Jaworska ◽  
Dalibor Vojtěch

This paper describes the effect of silicon on the manufacturing process, structure, phase composition, and selected properties of titanium aluminide alloys. The experimental generation of TiAl–Si alloys is composed of titanium aluminide (TiAl, Ti3Al or TiAl3) matrix reinforced by hard and heat-resistant titanium silicides (especially Ti5Si3). The alloys are characterized by wear resistance comparable with tool steels, high hardness, and very good resistance to oxidation at high temperatures (up to 1000 °C), but also low room-temperature ductility, as is typical also for other intermetallic materials. These alloys had been successfully prepared by the means of powder metallurgical routes and melting metallurgy methods.


2020 ◽  
Vol 321 ◽  
pp. 11055
Author(s):  
Yasuhiro Yamazaki ◽  
Ryota Sugaya ◽  
Fumio Tooyama

Titanium aluminide (TiAl) alloys have attracted to considerable interest as a material of blade in the low-pressure turbine section of aero engines since their superior specific strength. The mechanical properties and strengths of TiAl alloys are strongly sensitive to their microstructure controlled with thermo-mechanical processing. The collaborative research has been started from 2017 by the subcommittee on Titanium-Aluminide alloys, JSMS Committee on High Temperature Strength of Materials, in order to get basic information about the influence of microstructure on the high-temperature strength. This paper is a part of the collaborative research. The crack propagation tests were carried out under the load controlled out-of-phase type TMF (OP-TMF) loading condition with temperature range 400 ℃ -760 ℃ . The effect of microstructure on fatigue crack propagation behavior in was discussed.


2020 ◽  
Vol 321 ◽  
pp. 08008
Author(s):  
Ernie Crist ◽  
Birendra Jena ◽  
Michael Jacques ◽  
Matt Dahar ◽  
Don Li ◽  
...  

Utilization of gamma titanium aluminide alloys in aerospace and automotive/industrial applications has placed significant demand on melting sources for products to be used in cast, wrought, and direct-machining applications. There is also an increased demand for input stock used in gas atomization of powders. Current technologies used in ingot manufacturing include plasma arc melting, vacuum arc melting, and induction skull melting + centrifugal casting. Subsequent processing may include forging, re-melting + casting, or machining directly into components. Over the past six years, Arconic Engineered Structures has developed a robust melting method using plasma cold-hearth melting technology, including the design and implementation of a new 3-torch system to produce Ti-48-2-2 cast bars. General discussions concerning plasma cold-hearth melting, manufacturing challenges, and metallurgical attributes associated with cast Ti-48-2-2 bars will be reviewed. Emphasis will be on understanding the impact of hot isostatic pressing on internal voids, residual stress cracking and resulting mechanical properties.


2018 ◽  
Vol 3 (2) ◽  
pp. 1-9
Author(s):  
S. Castellanos ◽  
J. Lino Alves

Intermetallic titanium aluminide alloys are used in the high technology engineering field with the goal of achieving weight reduction in different components, exposed to corrosive environments and high temperatures in aeronautical and automotive industries. Despite their attractive properties such as low density, high strength, high stiffness and good corrosion, creep and oxidation resistance, the machinability of titanium aluminide alloys is difficult due to its high hardness, chemical reactivity, and low ductility. This article reviews the state of the art regarding the machinability of titanium aluminide alloys and focuses on the analysis of the milling process, namely the process parameters, surface integrity and cutting tools. The influence of titanium aluminides properties on the machinability is also discussed presenting some current trends and further needed research.


Sign in / Sign up

Export Citation Format

Share Document