Real Time Estimation of the State of Health of Dynamic Power Profiles Application to Li-Ion Batteries

2015 ◽  
Vol 64 (22) ◽  
pp. 147-153 ◽  
Author(s):  
A. Al Rahal Al Orabi ◽  
K. Mamadou ◽  
T. Delaplagne ◽  
L. Bellemare ◽  
R. Blonbou ◽  
...  
Author(s):  
Satadru Dey ◽  
Beshah Ayalew

This paper proposes and demonstrates an estimation scheme for Li-ion concentrations in both electrodes of a Li-ion battery cell. The well-known observability deficiencies in the two-electrode electrochemical models of Li-ion battery cells are first overcome by extending them with a thermal evolution model. Essentially, coupling of electrochemical–thermal dynamics emerging from the fact that the lithium concentrations contribute to the entropic heat generation is utilized to overcome the observability issue. Then, an estimation scheme comprised of a cascade of a sliding-mode observer and an unscented Kalman filter (UKF) is constructed that exploits the resulting structure of the coupled model. The approach gives new real-time estimation capabilities for two often-sought pieces of information about a battery cell: (1) estimation of cell-capacity and (2) tracking the capacity loss due to degradation mechanisms such as lithium plating. These capabilities are possible since the two-electrode model needs not be reduced further to a single-electrode model by adding Li conservation assumptions, which do not hold with long-term operation. Simulation studies are included for the validation of the proposed scheme. Effect of measurement noise and parametric uncertainties is also included in the simulation results to evaluate the performance of the proposed scheme.


Author(s):  
Sudipta Bijoy Sarmah ◽  
Pankaj Kalita ◽  
Akhil Garg ◽  
Xiao-dong Niu ◽  
Xing-Wei Zhang ◽  
...  

Lithium-ion (Li-ion) battery pack is vital for storage of energy produced from different sources and has been extensively used for various applications such as electric vehicles (EVs), watches, cookers, etc. For an efficient real-time monitoring and fault diagnosis of battery operated systems, it is important to have a quantified information on the state-of-health (SoH) of batteries. This paper conducts comprehensive literature studies on advancement, challenges, concerns, and futuristic aspects of models and methods for SoH estimation of batteries. Based on the studies, the methods and models for SoH estimation have been summarized systematically with their advantages and disadvantages in tabular format. The prime emphasis of this review was attributed toward the development of a hybridized method which computes SoH of batteries accurately in real-time and takes self-discharge into its account. At the end, the summary of research findings and the future directions of research such as nondestructive tests (NDT) for real-time estimation of battery SoH, finding residual SoH for the recycled batteries from battery packs, integration of mechanical aspects of battery with temperature, easy assembling–dissembling of battery packs, and hybridization of battery packs with photovoltaic and super capacitor are discussed.


2019 ◽  
Vol 24 (6) ◽  
pp. 4131-4147
Author(s):  
Mahmoud Lami ◽  
Abdulrahim Shamayleh ◽  
Shayok Mukhopadhyay

Sign in / Sign up

Export Citation Format

Share Document