Mist Deposition for TFT Technology

2019 ◽  
Vol 3 (8) ◽  
pp. 255-259 ◽  
Author(s):  
Karthikeyan Shanmugasundaram ◽  
Steven Price ◽  
Kyuhwan Chang ◽  
Dong-Oh Lee ◽  
Jerzy Ruzyllo
Keyword(s):  
2013 ◽  
Vol 2 (5) ◽  
pp. R87-R90 ◽  
Author(s):  
A. Kshirsagar ◽  
Z. Jiang ◽  
S. Pickering ◽  
J. Xu ◽  
J. Ruzyllo

2014 ◽  
Vol 10 (11) ◽  
pp. 934-938 ◽  
Author(s):  
Mamoru Furuta ◽  
Toshiyuki Kawaharamura ◽  
Takayuki Uchida ◽  
Dapeng Wang ◽  
Masaru Sanada

2000 ◽  
Vol 35 (9) ◽  
pp. 1455-1466
Author(s):  
SATOSHI FUKADA ◽  
YASUMITSU FUJII

1998 ◽  
Vol 14 (1) ◽  
pp. 27-45 ◽  
Author(s):  
KENNETH L. CLARK ◽  
NALINI M. NADKARNI ◽  
DOUGLAS SCHAEFER ◽  
HENRY L. GHOLZ

Meteorological variables, bulk cloud water and precipitation (BCWP), and bulk precipitation (BP) were measured above the canopy, and throughfall (TF; n = 20) was collected beneath an epiphyte-laden canopy of a tropical montane forest (TMF) for 1 y at Monteverde, Costa Rica. Total deposition (cloud + wet + dry) of inorganic ions to the canopy was estimated using a sodium (Na+) mass balance technique. Annual BCWP and BP depths were 2678 mm and 1792 for events where mean windspeeds (u) ≥ 2 m s&supminus1;, and 4077 mm and 3191 mm for all events, respectively. Volume-weighted mean pH and concentrations of nitrate-N (NO3−-N) and ammonium-N (NH4+-N) were 4.88, 0.09 and 0.09 mg l&supminus1; in BCWP, and 5.00, 0.05 and 0.05 mg l&supminus1; in BP, respectively. Cloud water and mist deposition to the canopy was estimated to be 356 mm. Estimated deposition of free acidity (H+), NO3−-N, and NH4+-N to the canopy was 0.49, 3.4 and 3.4 kg ha&supminus1; y&supminus1;, respectively. Mean TF depth was 1054 ± 83 mm (mean ± S.E.) for events where u ≥ 2 m s&supminus1;, and 2068 ± 132 mm for all events. Volume-weighted mean pH and concentrations of NO3−-N and NH4+-N in TF were 5.72, 0.04 mg l&supminus1;, and 0.07 mg l&supminus1;, respectively. Mean fluxes of H+, NO3−-N, and NH4+-N in TF were 0.04 ± 0.01, 0.6 ± 0.2 and 1.3 ± 0.2 kg ha&supminus1; y&supminus1;, and percent net retention of these ions by the canopy was 92 ± 2, 80 ±6, and 61 ± 6%, respectively. Phosphate, potassium, calcium and magnesium were leached from the canopy. Seasonal data suggest that biomass burning increased concentrations of NO3− and NH4+ in cloud water and precipitation at the end of the dry season. Regardless, a large majority of the inorganic N in atmospheric deposition was retained by the canopy at this site.


2019 ◽  
Vol 35 (18) ◽  
pp. 71-77 ◽  
Author(s):  
Aditya Kshirsagar ◽  
Shawn Pickering ◽  
Jian Xu ◽  
Jerzy Ruzyllo

2016 ◽  
Vol 213 (7) ◽  
pp. 1922-1925 ◽  
Author(s):  
Tatsuya Ohki ◽  
Koki Ichikawa ◽  
Jaker Hossain ◽  
Yasuhiko Fujii ◽  
Tatsuro Hanajiri ◽  
...  

2008 ◽  
Vol 23 (7) ◽  
pp. 075036 ◽  
Author(s):  
K Shanmugasundaram ◽  
S C Price ◽  
W Li ◽  
H Jiang ◽  
J Huang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document