The Effects of Oxidants on the Growth Behavior of PbTiO3 Thin Film by Atomic Layer Deposition

2019 ◽  
Vol 19 (2) ◽  
pp. 829-841 ◽  
Author(s):  
Hyun Ju Lee ◽  
Min Hyuk Park ◽  
Cheol Seong Hwang
Coatings ◽  
2020 ◽  
Vol 10 (7) ◽  
pp. 692
Author(s):  
Jong Hyeon Won ◽  
Seong Ho Han ◽  
Bo Keun Park ◽  
Taek-Mo Chung ◽  
Jeong Hwan Han

Herein, we performed a comparative study of plasma-enhanced atomic layer deposition (PEALD) of SnO2 films using Sn(dmamp)2 as the Sn source and either H2O plasma or O2 plasma as the oxygen source in a wide temperature range of 100–300 °C. Since the type of oxygen source employed in PEALD determines the growth behavior and resultant film properties, we investigated the growth feature of both SnO2 PEALD processes and the various chemical, structural, morphological, optical, and electrical properties of SnO2 films, depending on the oxygen source. SnO2 films from Sn(dmamp)2/H2O plasma (SH-SnO2) and Sn(dmamp)2/O2 plasma (SO-SnO2) showed self-limiting atomic layer deposition (ALD) growth behavior with growth rates of ~0.21 and 0.07–0.13 nm/cycle, respectively. SO-SnO2 films showed relatively larger grain structures than SH-SnO2 films at all temperatures. Interestingly, SH-SnO2 films grown at high temperatures of 250 and 300 °C presented porous rod-shaped surface morphology. SO-SnO2 films showed good electrical properties, such as high mobility up to 27 cm2 V−1·s−1 and high carrier concentration of ~1019 cm−3, whereas SH-SnO2 films exhibited poor Hall mobility of 0.3–1.4 cm2 V−1·s−1 and moderate carrier concentration of 1 × 1017–30 × 1017 cm−3. This may be attributed to the significant grain boundary and hydrogen impurity scattering.


Author(s):  
Yoon Kyeung Lee ◽  
Chanyoung Yoo ◽  
Woohyun Kim ◽  
Jeongwoo Jeon ◽  
Cheol Seong Hwang

Atomic layer deposition (ALD) is a thin film growth technique that uses self-limiting, sequential reactions localized at the growing film surface. It guarantees exceptional conformality on high-aspect-ratio structures and controllability...


2013 ◽  
Vol 542 ◽  
pp. 219-224 ◽  
Author(s):  
Väino Sammelselg ◽  
Ivan Netšipailo ◽  
Aleks Aidla ◽  
Aivar Tarre ◽  
Lauri Aarik ◽  
...  

2014 ◽  
Vol 2 (36) ◽  
pp. 15044-15051 ◽  
Author(s):  
Erik Østreng ◽  
Knut Bjarne Gandrud ◽  
Yang Hu ◽  
Ola Nilsen ◽  
Helmer Fjellvåg

Atomic layer deposition (ALD) has been used to prepare nano-structured cathode films for Li-ion batteries of V2O5 from VO(thd)2 and ozone at 215 °C.


Sign in / Sign up

Export Citation Format

Share Document