Numerical Investigation of Cathode Structure Influence on Electrochemical Behavior of Lithium-Sulfur Battery

2021 ◽  
Vol 105 (1) ◽  
pp. 617-625
Author(s):  
Martin Mačák ◽  
Kamil Jasso ◽  
Petr Vyroubal ◽  
Tomáš Kazda ◽  
Pavel Cudek

Nowadays, Lithium-Sulfur batteries are often considered as the next generation technology for energy storage systems. This article investigates the influence of the size of sulfur clusters present in the cathode on the battery overall electrochemical behavior. The properties of the cathode are studied by cyclic voltammetry simulations using a custom numerical model implemented into Ansys Fluent. The simulation is supplemented by experimental cyclic voltammetry measurements and images from a scanning electron microscope.

Author(s):  
Jia-Jia Yuan ◽  
Qingran Kong ◽  
Zheng Huang ◽  
You-Zhi Song ◽  
Mingyang Li ◽  
...  

The commercial application of lithium-sulfur batteries is mainly restricted by quick capacity decay and poor cycle life due to the shuttle effect, insulate nature of sulfur, and cathode structure pulverization....


Author(s):  
Haojie Li ◽  
Yihua Song ◽  
Kai Xi ◽  
Wei Wang ◽  
Sheng Liu ◽  
...  

A sufficient areal capacity is necessary for achieving high-energy lithium sulfur battery, which requires high enough sulfur loading in cathode materials. Therefore, kinetically fast catalytic conversion of polysulfide intermediates is...


Author(s):  
Jianbo Li ◽  
Wenfu Xie ◽  
Shimeng Zhang ◽  
Simin Xu ◽  
Mingfei Shao

Lithium−sulfur batteries (Li–S) has been gradual becoming one of the most promising next-generation storage systems, but its practical application is still limited by the extremely low S loading as well...


Membranes ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 483
Author(s):  
Jing Wang ◽  
Riwei Xu ◽  
Chengzhong Wang ◽  
Jinping Xiong

We report on the preparation and characterization of a novel lamellar polypyrrole using an attapulgite–sulfur composite as a hard template. Pretreated attapulgite was utilized as the carrier of elemental sulfur and the attapulgite–sulfur–polypyrrole (AT @400 °C–S–PPy) composite with 50 wt.% sulfur was obtained. The structure and morphology of the composite were characterized with infrared spectroscopy (IR), thermogravimetric analysis (TGA), and scanning electron microscopy (SEM). An AT @400 °C–S–PPy composite was further utilized as the cathode material for lithium–sulfur batteries. The first discharge specific capacity of this kind of battery reached 1175 mAh/g at a 0.1 C current rate and remained at 518 mAh/g after 100 cycles with capacity retention close to 44%. In the rate test, compared with the polypyrrole–sulfur (PPy–S) cathode material, the AT @400 °C–S–PPy cathode material showed lower capacity at a high current density, but it showed higher capacity when the current came back to a low current density, which was attributed to the “recycling” of pores and channels of attapulgite. Therefore, the lamellar composite with special pore structure has great value in improving the performance of lithium–sulfur batteries.


Author(s):  
Peisen Wu ◽  
Yongbo Wu ◽  
Kaiyin Zhu ◽  
Guozheng Ma ◽  
Xiaoming Lin ◽  
...  

Lithium-sulfur (Li-S) batteries have recently caught a growing number of attentions as next-generation energy storage systems on account of their outstanding theoretical energy density, environmental friendliness and economical nature. However,...


2018 ◽  
Vol 6 (18) ◽  
pp. 8655-8661 ◽  
Author(s):  
Chao Wu ◽  
Chunxian Guo ◽  
JingGao Wu ◽  
Wei Ai ◽  
Ting Yu ◽  
...  

A stable lithium sulfide membrane is constructedin situto wrap the mixed sulfur/C material surface of a lithium–sulfur battery (LSB) by delicately tuning the galvanostatic discharge current.


RSC Advances ◽  
2019 ◽  
Vol 9 (59) ◽  
pp. 34430-34436
Author(s):  
Chang Wang ◽  
Jianbao Wu ◽  
Xiaoyi Li ◽  
Yiming Mi

Reversible lithium–sulfur batteries (LSBs) are considered one of the most promising next-generation energy storage systems.


Sign in / Sign up

Export Citation Format

Share Document