Investigation of the Impact of Flow of Vented Gas on Propagation of Thermal Runaway in a Li-Ion Battery Pack

Author(s):  
Dhananjay Mishra ◽  
Krishna Shah ◽  
Ankur Jain
Author(s):  
Guodong Fan ◽  
Ke Pan ◽  
Alexander Bartlett ◽  
Marcello Canova ◽  
Giorgio Rizzoni

Lithium-ion batteries for automotive applications are subject to aging with usage and environmental conditions, leading to the reduction of the performance, reliability and life span of the battery pack. To this extent, the ability of simulating the dynamic behavior of a battery pack using high-fidelity electrochemical and thermal models could provide very useful information for the design of Battery Management Systems (BMS). For instance such models could be used to predict the impact of cell-to-cell variations in the electrical and thermal properties on the overall performance of the pack, as well as on the propagation of degradation from one cell to another. This paper presents a method for fast simulation of an integrated electrochemical-thermal battery pack model based on first-principles. First, a coupled electrochemical and thermal model is developed for a single cell, based upon the data of a composite LiNi1/3Mn1/3Co1/3O2 – LiMn2O4 (LMO-NMC) Li-ion battery, and validated on experimental data. Then, the cell model is extended to a reconfigurable and parametric model of a complete battery pack. The proposed modeling approach is completely general and applicable to characterize any pack topology, varying electrical connections and thermal boundary conditions. Finally, simulation results are shown to illustrate the effects of parameter variability on the pack performance.


2015 ◽  
Vol 1 (4) ◽  
pp. 402-412 ◽  
Author(s):  
Haris M. Khalid ◽  
Qadeer Ahmed ◽  
Jimmy C.-H. Peng ◽  
Giorgio Rizzoni

Author(s):  
Daniele Landi ◽  
Paolo Cicconi ◽  
Michele Germani

An important issue in the mechanical industry is the reduction of the time to market, in order to meet quickly the customer needs. This goal is very important for SMEs that produce small lots of customized products. In the context of greenhouse gas emissions reduction, vehicles powered by electric motors seem to be the most suitable alternative to the traditional internal combustion engine vehicles. The market of customized electric vehicles is a niche market suitable for SMEs. Nowadays, the energy storage system of an electric vehicle powertrain consists of several Li-ion cells arranged in a container called battery pack. Particularly, the battery unit is considered as the most critical component in electric vehicle, because it impacts on performance and life cycle cost. Currently, the design of a battery pack mostly depends on the related market size. A longer design time is expected in the case of a large scale production. While a small customized production requires more agility and velocity in the design process. The proposed research focuses on a design methodology to support the designer in the evaluation of the battery thermal behavior. This work has been applied in the context of a customized small production. As test case, an urban electric light commercial vehicle has been analyzed. The designed battery layout has been evaluated and simulated using virtual prototyping tools. A cooling configuration has been analyzed and then prototyped in a physical vehicle. The virtual thermal behavior of a Li-ion battery has been validated at the test bench. The real operational conditions have been analyzed reproducing several ECE-15 driving cycles and many acceleration runs at different load values. Thermocouples have measured the temperature values during the physical experiments, in order to validate the analytical thermal profile evaluated with the proposed design approach.


2019 ◽  
Vol 18 (2) ◽  
pp. 49-56
Author(s):  
Md. Nahian Al Subri Ivan ◽  
Sujit Devnath ◽  
Rethwan Faiz ◽  
Kazi Firoz Ahmed

To infer and predict the reliability of the remaining useful life of a lithium-ion (Li-ion) battery is very significant in the sectors associated with power source proficiency. As an energy source of electric vehicles (EV), Li-ion battery is getting attention due to its lighter weight and capability of storing higher energy. Problems with the reliability arises while li-ion batteries of higher voltages are required. As in this case several li-ion cells areconnected in series and failure of one cell may cause the failure of the whole battery pack. In this paper, Firstly, the capacity degradation of li-ion cells after each cycle is observed and secondly with the help of MATLAB 2016 a mathematical model is developed using Weibull Probability Distribution and Exponential Distribution to find the reliability of different types of cell configurations of a non-redundant li-ion battery pack. The mathematical model shows that the parallel-series configuration of cells is more reliable than the series configuration of cells. The mathematical model also shows that if the discharge rate (C-rate) remains constant; there could be an optimum number for increasing the cells in the parallel module of a parallel-series onfiguration of cells of a non-redundant li-ion battery pack; after which only increasing the number of cells in parallel module doesn’t increase the reliability of the whole battery pack significantly. 


Author(s):  
Michael S. Mazzola ◽  
Masood Shahverdi
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document