scholarly journals Reliability Analysis of Different Cell Configurations of Lithium ion battery Pack

2019 ◽  
Vol 18 (2) ◽  
pp. 49-56
Author(s):  
Md. Nahian Al Subri Ivan ◽  
Sujit Devnath ◽  
Rethwan Faiz ◽  
Kazi Firoz Ahmed

To infer and predict the reliability of the remaining useful life of a lithium-ion (Li-ion) battery is very significant in the sectors associated with power source proficiency. As an energy source of electric vehicles (EV), Li-ion battery is getting attention due to its lighter weight and capability of storing higher energy. Problems with the reliability arises while li-ion batteries of higher voltages are required. As in this case several li-ion cells areconnected in series and failure of one cell may cause the failure of the whole battery pack. In this paper, Firstly, the capacity degradation of li-ion cells after each cycle is observed and secondly with the help of MATLAB 2016 a mathematical model is developed using Weibull Probability Distribution and Exponential Distribution to find the reliability of different types of cell configurations of a non-redundant li-ion battery pack. The mathematical model shows that the parallel-series configuration of cells is more reliable than the series configuration of cells. The mathematical model also shows that if the discharge rate (C-rate) remains constant; there could be an optimum number for increasing the cells in the parallel module of a parallel-series onfiguration of cells of a non-redundant li-ion battery pack; after which only increasing the number of cells in parallel module doesn’t increase the reliability of the whole battery pack significantly. 

2020 ◽  
Author(s):  
Iffandya Popy Wulandari ◽  
Min-Chun Pan

Abstract As one pioneer means for energy storage, Li-ion battery packs have a complex and critical issue about degradation monitoring and remaining useful life estimation. It induces challenges on condition characterization of Li-ion battery packs such as internal resistance (IR). The IR is an essential parameter of a Li-ion battery pack, relating to the energy efficiency, power performance, degradation, and physical life of the li-ion battery pack. This study aims to obtain reliable IR through applying an evaluation test that acquires data such as voltage, current, and temperature provided by the battery management system (BMS). Additionally, this paper proposes an approach to predict the degradation of Li-ion battery pack using support vector regression (SVR) with RBF kernel. The modeling approach using the relationship between internal resistance, different SOC levels 20%–100%, and cycle at the beginning of life 1 cycle until cycle 500. The data-driven method is used here to achieve battery life prediction.based on internal resistance behavior in every period using supervised machine learning, SVR. Our experiment result shows that the internal resistance was increasing non-linear, approximately 0.24%, and it happened if the cycle rise until 500 cycles. Besides, using SVR algorithm, the quality of the fitting was evaluated using coefficient determination R2, and the score is 0.96. In the proposed modeling process of the battery pack, the value of MSE is 0.000035.


Energies ◽  
2020 ◽  
Vol 13 (9) ◽  
pp. 2212
Author(s):  
Hien Vu ◽  
Donghwa Shin

Lithium-ion batteries exhibit significant performance degradation such as power/energy capacity loss and life cycle reduction in low-temperature conditions. Hence, the Li-ion battery pack is heated before usage to enhance its performance and lifetime. Recently, many internal heating methods have been proposed to provide fast and efficient pre-heating. However, the proposed methods only consider a combination of unit cells while the internal heating should be implemented for multiple groups within a battery pack. In this study, we investigated the possibility of timing control to simultaneously obtain balanced temperature and state of charge (SOC) between each cell by considering geometrical and thermal characteristics of the battery pack. The proposed method schedules the order and timing of the charge/discharge period for geometrical groups in a battery pack during internal pre-heating. We performed a pack-level simulation with realistic electro-thermal parameters of the unit battery cells by using the mutual pulse heating strategy for multi-layer geometry to acquire the highest heating efficiency. The simulation results for heating from −30 ∘ C to 10 ∘ C indicated that a balanced temperature-SOC status can be achieved via the proposed method. The temperature difference can be decreased to 0.38 ∘ C and 0.19% of the SOC difference in a heating range of 40 ∘ C with only a maximum SOC loss of 2.71% at the end of pre-heating.


2013 ◽  
Vol 380-384 ◽  
pp. 3374-3377
Author(s):  
San Xing Chen ◽  
Ming Yu Gao ◽  
Guo Jin Ma ◽  
Zhi Wei He

In this paper, a cell equalization circuit based on the Flyback topology is proposed for the Lithium-ion battery pack. Multiple transformers are employed in this circuit, equal to the number of cells in the pack. All the primary windings are coupled in series to provide the equalizing energy form the whole battery pack to the specific under charged cells. The structure and principle of the circuit is discussed, finally a prototype of four cells is presented to show the outstanding equalization efficiency of the proposed circuit.


The green energy evolution initiated the use of electric and hybrid electric vehicles at present on roads. These vehicles extensively use different types of batteries and among them lithium ion batteries are prominent. The Li-ion battery pack constitutes number of Li-ion battery cells connected in series and parallel configuration. This battery bank needs a suitable battery management system for its efficient operation. This paper presents a novel battery management system to monitor and control the battery current, voltage, state of charge and most importantly the cell temperature. The detail BMS scheme for Li-ion battery pack is presented and simulation is carried out to validate its performance with a driving cycle of electric car.


Author(s):  
Trang Nguyen Van ◽  
Tan Nguyen Duy ◽  
Anh Tuấn Phạm

This study presents a research related to a Plug-in Hybrid Electric Motorcycle (HEM) which renovated from a Honda Lead 110cc with rear wheel is driven by original internal combustion engine and continuously variable transmission, while front wheel is directly-driven by a 48V – 1,000W BLDC Hub-Motor. The research focuses on optimal calculating, designing, prototyping and testing an electric power supply using Lithium-ion (Li-ion) battery pack to replace the lead–acid battery. The simulation and experimental results are able to evaluate the dynamic characteristics and operating cost of HEM. The study has been designed and prototyed a 48V – 33Ah Li-ion battery pack with a Battery Management System (BMS) circuit embeded on the vehicle. The battery pack is 10.84 (kg) weight and 8.11 (l) volume, reduced 30 (kg) and 12.89 liters compared to the lead-acid battery where battery life is greater than 2,000 cycles. In only electric motor mode, the longest distance of the HEM is 78.77 (km) for a half load, only driver, and 65.83 (km) for full load, one driver, and one passenger. Maximum speed is 52.67 (km/h) for a half load and 48.42 (km/h) for full load. In hybrid mode until SOC reduce to 50%, HEM can travel 64.366 (km) for a half load and 54.477 (km) for full load. The fuel consumption in the each case is 2.162 and 2.425 (l/100km), 0.5 liter lower than the original one and 0.3 liter lower than lead-acid battery. The cost of investment in HEM is 56 million VND and the operating cost is 1,106 VND/km, while the original vehicles are 40 million VND and 1,352 (VND/km). For every 1km using hybrid vehicles, 246.88 VND will be saved, after about 3.1 years, it will recoup the spending on investment. At the end of the motorcycle life cycle is about 200,000 km, and 43 million VND will be saved.


Energies ◽  
2020 ◽  
Vol 13 (14) ◽  
pp. 3532 ◽  
Author(s):  
Majid Astaneh ◽  
Jelena Andric ◽  
Lennart Löfdahl ◽  
Dario Maggiolo ◽  
Peter Stopp ◽  
...  

Large-scale introduction of electric vehicles (EVs) to the market sets outstanding requirements for battery performance to extend vehicle driving range, prolong battery service life, and reduce battery costs. There is a growing need to accurately and robustly model the performance of both individual cells and their aggregated behavior when integrated into battery packs. This paper presents a novel methodology for Lithium-ion (Li-ion) battery pack simulations under actual operating conditions of an electric mining vehicle. The validated electrochemical-thermal models of Li-ion battery cells are scaled up into battery modules to emulate cell-to-cell variations within the battery pack while considering the random variability of battery cells, as well as electrical topology and thermal management of the pack. The performance of the battery pack model is evaluated using transient experimental data for the pack operating conditions within the mining environment. The simulation results show that the relative root mean square error for the voltage prediction is 0.7–1.7% and for the battery pack temperature 2–12%. The proposed methodology is general and it can be applied to other battery chemistries and electric vehicle types to perform multi-objective optimization to predict the performance of large battery packs.


2012 ◽  
Vol 605-607 ◽  
pp. 77-80
Author(s):  
Zhan Jun He ◽  
Xin Ju Hu ◽  
Si Zhong Di ◽  
Bing Bing Song ◽  
Chang Fu Yang

At present, the power of electric vehicle mainly relies on li-ion battery module. The temperature field of lithium-ion power battery pack assembly is an important factor which affects the security and reliability of EV when the vehicle is running [1,2]. In this paper, by simulating the typical discharge condition of Li-ion battery module, it is realized that the detailed temperature field and air flow field of battery pack assembly. According to the results of thermal analysis, li-ion battery module layout can be improved, and the high-temperature region of battery pack assembly can be found clearly


Author(s):  
Guodong Fan ◽  
Ke Pan ◽  
Alexander Bartlett ◽  
Marcello Canova ◽  
Giorgio Rizzoni

Lithium-ion batteries for automotive applications are subject to aging with usage and environmental conditions, leading to the reduction of the performance, reliability and life span of the battery pack. To this extent, the ability of simulating the dynamic behavior of a battery pack using high-fidelity electrochemical and thermal models could provide very useful information for the design of Battery Management Systems (BMS). For instance such models could be used to predict the impact of cell-to-cell variations in the electrical and thermal properties on the overall performance of the pack, as well as on the propagation of degradation from one cell to another. This paper presents a method for fast simulation of an integrated electrochemical-thermal battery pack model based on first-principles. First, a coupled electrochemical and thermal model is developed for a single cell, based upon the data of a composite LiNi1/3Mn1/3Co1/3O2 – LiMn2O4 (LMO-NMC) Li-ion battery, and validated on experimental data. Then, the cell model is extended to a reconfigurable and parametric model of a complete battery pack. The proposed modeling approach is completely general and applicable to characterize any pack topology, varying electrical connections and thermal boundary conditions. Finally, simulation results are shown to illustrate the effects of parameter variability on the pack performance.


Nanoscale ◽  
2021 ◽  
Author(s):  
Kun Wang ◽  
Yongyuan Hu ◽  
Jian Pei ◽  
Fengyang Jing ◽  
Zhongzheng Qin ◽  
...  

High capacity Co2VO4 becomes a potential anode material for lithium ion batteries (LIBs) benefiting from its lower output voltage during cycling than other cobalt vanadates. However, the application of this...


Sign in / Sign up

Export Citation Format

Share Document