scholarly journals Novel Method for Monitoring the Electrochemical Capacitance by In Situ Impedance Spectroscopy as Indicator for Particle Cracking of Nickel-Rich NCMs: Part II. Effect of Oxygen Release Dependent on Particle Morphology

2021 ◽  
Vol 168 (12) ◽  
pp. 120501
Author(s):  
Stefan Oswald ◽  
Daniel Pritzl ◽  
Morten Wetjen ◽  
Hubert A. Gasteiger

Nickel-rich NCMs (LiMO2, with M = Ni, Co, and Mn) are increasingly commercialized as cathode active materials for lithium-ion batteries due to their high specific capacity. However, the available capacity is limited due to their structural instability at high state of charge, causing the formation of a resistive surface layer upon release of lattice oxygen, observed at different upper cutoff potentials depending on the NCM composition. To understand the impact of this instability, the correlation of oxygen release, capacity fading, and particle cracking was investigated as a function of state of charge for three nickel-rich NCMs, differing either in composition (i.e., in transition metal ratio) or in morphology (i.e., in primary crystallite size). First, the onset of the release of lattice oxygen was identified by on-line electrochemical mass spectrometry (OEMS). In electrochemical cycling experiments, the NCM capacitance was tracked in situ by impedance spectroscopy (EIS) using a micro-reference electrode while the upper cutoff potential was increased every third cycle stepwise from 3.9 V to 5.0 V. Hereby, the effect of the degree of delithiation on the discharge capacity and on the particle integrity (tracked via its surface area) was examined, both for poly- and single-crystalline NCMs.

Polymers ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 1971
Author(s):  
Lihua Ye ◽  
Muhammad Muzamal Ashfaq ◽  
Aiping Shi ◽  
Syyed Adnan Raheel Shah ◽  
Yefan Shi

In this research, the aim relates to the material characterization of high-energy lithium-ion pouch cells. The development of appropriate model cell behavior is intended to simulate two scenarios: the first is mechanical deformation during a crash and the second is an internal short circuit in lithium-ion cells during the actual effect scenarios. The punch test has been used as a benchmark to analyze the effects of different state of charge conditions on high-energy lithium-ion battery cells. This article explores the impact of three separate factors on the outcomes of mechanical punch indentation experiments. The first parameter analyzed was the degree of prediction brought about by experiments on high-energy cells with two different states of charge (greater and lesser), with four different sizes of indentation punch, from the cell’s reaction during the indentation effects on electrolyte. Second, the results of the loading position, middle versus side, are measured at quasi-static speeds. The third parameter was the effect on an electrolyte with a different state of charge. The repeatability of the experiments on punch loading was the last test function analyzed. The test results of a greater than 10% state of charge and less than 10% state of charge were compared to further refine and validate this modeling method. The different loading scenarios analyzed in this study also showed great predictability in the load-displacement reaction and the onset short circuit. A theoretical model of the cell was modified for use in comprehensive mechanical deformation. The overall conclusion found that the loading initiating the cell’s electrical short circuit is not instantaneously instigated and it is subsequently used to process the development of a precise and practical computational model that will reduce the chances of the internal short course during the crash.


Energies ◽  
2019 ◽  
Vol 12 (23) ◽  
pp. 4507 ◽  
Author(s):  
Yusuke Abe ◽  
Natsuki Hori ◽  
Seiji Kumagai

Lithium-ion batteries (LIBs) using a LiFePO4 cathode and graphite anode were assembled in coin cell form and subjected to 1000 charge-discharge cycles at 1, 2, and 5 C at 25 °C. The performance degradation of the LIB cells under different C-rates was analyzed by electrochemical impedance spectroscopy (EIS) and scanning electron microscopy. The most severe degradation occurred at 2 C while degradation was mitigated at the highest C-rate of 5 C. EIS data of the equivalent circuit model provided information on the changes in the internal resistance. The charge-transfer resistance within all the cells increased after the cycle test, with the cell cycled at 2 C presenting the greatest increment in the charge-transfer resistance. Agglomerates were observed on the graphite anodes of the cells cycled at 2 and 5 C; these were more abundantly produced in the former cell. The lower degradation of the cell cycled at 5 C was attributed to the lowered capacity utilization of the anode. The larger cell voltage drop caused by the increased C-rate reduced the electrode potential variation allocated to the net electrochemical reactions, contributing to the charge-discharge specific capacity of the cells.


Sign in / Sign up

Export Citation Format

Share Document