Trade-Off between Gate Oxide Integrity and Transistor Performance for FinFET Technology

2017 ◽  
Vol 6 (8) ◽  
pp. N137-N141 ◽  
Author(s):  
Hsien-Ching Lo ◽  
Jianwei Peng ◽  
Chloe Yong ◽  
Suresh Uppal ◽  
Yi Qi ◽  
...  
Author(s):  
Hua Younan ◽  
Chu Susan ◽  
Gui Dong ◽  
Mo Zhiqiang ◽  
Xing Zhenxiang ◽  
...  

Abstract As device feature size continues to shrink, the reducing gate oxide thickness puts more stringent requirements on gate dielectric quality in terms of defect density and contamination concentration. As a result, analyzing gate oxide integrity and dielectric breakdown failures during wafer fabrication becomes more difficult. Using a traditional FA flow and methods some defects were observed after electrical fault isolation using emission microscopic tools such as EMMI and TIVA. Even with some success with conventional FA the root cause was unclear. In this paper, we will propose an analysis flow for GOI failures to improve FA’s success rate. In this new proposed flow both a chemical method, Wright Etch, and SIMS analysis techniques are employed to identify root cause of the GOI failures after EFA fault isolation. In general, the shape of the defect might provide information as to the root cause of the GOI failure, whether related to PID or contamination. However, Wright Etch results are inadequate to answer the questions of whether the failure is caused by contamination or not. If there is a contaminate another technique is required to determine what the contaminant is and where it comes from. If the failure is confirmed to be due to contamination, SIMS is used to further determine the contamination source at the ppm-ppb level. In this paper, a real case of GOI failure will be discussed and presented. Using the new failure analysis flow, the root cause was identified to be iron contamination introduced from a worn out part made of stainless steel.


2017 ◽  
Vol 897 ◽  
pp. 497-500 ◽  
Author(s):  
Shinsuke Harada ◽  
Yusuke Kobayashi ◽  
A. Kinoshita ◽  
N. Ohse ◽  
Takahito Kojima ◽  
...  

A critical issue with the SiC UMOSFET is the need to develop a shielding structure for the gate oxide at the trench bottom without any increase in the JFET resistance. This study describes our new UMOSFET named IE-UMOSFET, which we developed to cope with this trade-off. A simulation showed that a low on-resistance is accompanied by an extremely low gate oxide field even with a negative gate voltage. The low RonA was sustained as Vth increases. The RonA values at VG=25 V (Eox=3.2 MV/cm) and VG=20V (Eox=2.5 MV/cm), respectively, for the 3mm x 3mm device were 2.4 and 2.8 mWcm2 with a lowest Vth of 2.4 V, and 3.1 and 4.4 mWcm2 with a high Vth of 5.9 V.


Author(s):  
S.R. Wilson ◽  
T. Wetteroth ◽  
S. Hong ◽  
H. Shin ◽  
B.-Y. Hwang ◽  
...  

2001 ◽  
Vol 48 (2) ◽  
pp. 307-315 ◽  
Author(s):  
K. Kawamura ◽  
H. Deai ◽  
H. Sakamoto ◽  
T. Yano ◽  
I. Hamaguchi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document