Corrosion Behavior of Micro-Arc Oxidized Magnesium with Calcium Phosphate Coating in Flowing Simulated Body Fluids

2015 ◽  
Vol 162 (9) ◽  
pp. C426-C432 ◽  
Author(s):  
GuangYi Liu ◽  
Shawei Tang ◽  
Jin Hu ◽  
Yufen Zhang ◽  
Yaming Wang ◽  
...  
2009 ◽  
Vol 631-632 ◽  
pp. 211-216 ◽  
Author(s):  
Kyosuke Ueda ◽  
Takayuki Narushima ◽  
Takashi Goto ◽  
T. Katsube ◽  
Hironobu Nakagawa ◽  
...  

Calcium phosphate coating films were fabricated on Ti-6Al-4V plates and screw-type implants with a blast-treated surface using radiofrequency (RF) magnetron sputtering and were evaluated in vitro and in vivo. Amorphous calcium phosphate (ACP) and oxyapatite (OAp) films obtained in this study could cover the blast-treated substrate very efficiently, maintaining the surface roughness. For the in vitro evaluations of the calcium phosphate coating films, bonding strength and alkaline phosphatase (ALP) activity were examined. The bonding strength of the coating films to a blast-treated substrate exceeded 60 MPa, independent of film phases except for the film after post-heat-treatment in silica ampoule. When compared with an uncoated substrate, the increase in the ALP activity of osteoblastic SaOS-2 cells on a calcium phosphate coated substrate was confirmed by a cell culture test. The removal torque of screw-type Ti-6Al-4V implants with a blast-treated surface from the femur of Japanese white rabbit increased with the duration of implantation and it was statistically improved by coating an ACP film 2 weeks after implantation. The in vitro and in vivo studies suggested that the application of the sputtered ACP film as a coating on titanium implants was effective in improving their biocompatibility with bones.


2007 ◽  
Vol 361-363 ◽  
pp. 907-910
Author(s):  
Marco A. Lopez-Heredia ◽  
Borhane H. Fellah ◽  
Paul Pilet ◽  
C. Leroux ◽  
M. Dorget ◽  
...  

Porous Titanium Scaffolds were produced by using a rapid prototyping technique. These scaffolds were either coated or not with a calcium phosphate coating via an eletrodeposition method. Rat bone marrow mesenchymal stem cells were cultured on the scaffolds at a density of 106 cells/scaffold for a period of 3 days. Cell proliferation was measured by using the Alamar Blue assay. The scaffolds were observed by SEM and polarized light microscopy. Constructs were then implanted subcutaneously for 4 weeks in syngenic rats. Cells proliferated well after seeding. After subcutaneous implantation, histology and SEM revealed the presence of uniform coatings as well as Ca and P deposits in the non-coated scaffolds suggesting mineralization.


Sign in / Sign up

Export Citation Format

Share Document