Adhesion properties of a three-layer system based on RF-magnetron sputter deposited calcium-phosphate coating and silver nanoparticles

Author(s):  
M. S. Tkachev ◽  
E. S. Melnikov ◽  
M. A. Surmeneva ◽  
A. A. Sharonova ◽  
R. A. Surmenev ◽  
...  
2007 ◽  
Vol 361-363 ◽  
pp. 721-724
Author(s):  
U. Lembke ◽  
Regina Lange ◽  
Ulrich Beck ◽  
Hans Georg Neumann

A nanoporous calcium phosphate (CaP) coating on metallic surfaces is presented. The coating consists of a stack of (a) a TiNbN layer deposited by physical vapor deposition and acting as diffusion barrier against allergenic ions, (b) a SiO2 xerogel layer providing good adhesion properties and designing the nanoporosity of the outer CaP layer (c) precipitated electrochemically. SEM results verified a homogeneous nanoscale porous structure of the CaP coating. It is characterized by a high adhesion strength. If applied to stent covering the nanoporous CaP coating has promising properties to initiate rapid endothelium formation and reduced risk of restenosis.


2020 ◽  
Vol 22 (2) ◽  
Author(s):  
Aidar K. Kenzhegulov ◽  
Axaule A. Mamaeva ◽  
Alexander V. Panichkin ◽  
Konstantin A. Prosolov ◽  
Anna Brończyk ◽  
...  

Purpose: The main goal of the work was to find the interconnection between the high-frequency magnetron sputtering parameters and the adhesion properties of CaP coatings formed on the surface of titanium substrate. Methods: Calcium-phosphate coatings, similar in composition to hydroxyapatite, were generated by high-frequency magnetron sputtering on titanium substrate at different values of high-frequency specific power over times of one and two hours. Afterwards, the generated coatings were studied using the method of X-ray phase analysis, and sclerometric tests (scratch test) were carried out. The adhesion strength of the deposited coatings was tested for different coating thicknesses from 0.45 to 1.1 × 10–3 mm. Results: According to the results of sclerometry, it was found that with an increase in the high-frequency specific power of plasma to 3.15 W/cm2, the adhesion strength of the calcium-phosphate coating also increases. For all the coatings, the critical loads at which the coating completely exfoliated from the substrate were determined. Conclusions: According to the research results, the most optimal conditions for obtaining high-adhesive calcium-phosphate coatings were determined.


2009 ◽  
Vol 631-632 ◽  
pp. 211-216 ◽  
Author(s):  
Kyosuke Ueda ◽  
Takayuki Narushima ◽  
Takashi Goto ◽  
T. Katsube ◽  
Hironobu Nakagawa ◽  
...  

Calcium phosphate coating films were fabricated on Ti-6Al-4V plates and screw-type implants with a blast-treated surface using radiofrequency (RF) magnetron sputtering and were evaluated in vitro and in vivo. Amorphous calcium phosphate (ACP) and oxyapatite (OAp) films obtained in this study could cover the blast-treated substrate very efficiently, maintaining the surface roughness. For the in vitro evaluations of the calcium phosphate coating films, bonding strength and alkaline phosphatase (ALP) activity were examined. The bonding strength of the coating films to a blast-treated substrate exceeded 60 MPa, independent of film phases except for the film after post-heat-treatment in silica ampoule. When compared with an uncoated substrate, the increase in the ALP activity of osteoblastic SaOS-2 cells on a calcium phosphate coated substrate was confirmed by a cell culture test. The removal torque of screw-type Ti-6Al-4V implants with a blast-treated surface from the femur of Japanese white rabbit increased with the duration of implantation and it was statistically improved by coating an ACP film 2 weeks after implantation. The in vitro and in vivo studies suggested that the application of the sputtered ACP film as a coating on titanium implants was effective in improving their biocompatibility with bones.


2007 ◽  
Vol 361-363 ◽  
pp. 907-910
Author(s):  
Marco A. Lopez-Heredia ◽  
Borhane H. Fellah ◽  
Paul Pilet ◽  
C. Leroux ◽  
M. Dorget ◽  
...  

Porous Titanium Scaffolds were produced by using a rapid prototyping technique. These scaffolds were either coated or not with a calcium phosphate coating via an eletrodeposition method. Rat bone marrow mesenchymal stem cells were cultured on the scaffolds at a density of 106 cells/scaffold for a period of 3 days. Cell proliferation was measured by using the Alamar Blue assay. The scaffolds were observed by SEM and polarized light microscopy. Constructs were then implanted subcutaneously for 4 weeks in syngenic rats. Cells proliferated well after seeding. After subcutaneous implantation, histology and SEM revealed the presence of uniform coatings as well as Ca and P deposits in the non-coated scaffolds suggesting mineralization.


Sign in / Sign up

Export Citation Format

Share Document