Chemical Mechanical Polishing of TiN Film with Potassium Permanganate and L-Aspartic Acid in Alkaline Slurry

Author(s):  
Chenghsing Li ◽  
Daolin Cai ◽  
Daohuan Feng ◽  
Zijing Cui ◽  
Weili Liu ◽  
...  
Author(s):  
Zewei Yuan ◽  
Zhuji Jin ◽  
Youjun Zhang ◽  
Quan Wen

The objective of this study is to investigate slurries for chemical mechanical polishing (CMP) of chemically vapor-deposited (CVD) diamond films based on the principle of thermokinetics combined with physical and chemical properties. The study uses the mechanical work, surface energy and oxidability of a slurry with diamond carbon as the main physical-chemical indicators in selecting the slurries. The study indentifies 10 CMP slurries of different oxidants, such as potassium ferrate, potassium permanganate, chromium trioxide and potassium dichromate, for CVD diamond film polishing. Prior to a CMP process, prepolishing with a boron carbide plate is performed to prepare a CVD diamond film with acceptable surface finish and flatness. After polishing with the CMP process a CVD diamond film is examined with optical microscopy, surface profilometry, atomic force microscopy and X-ray photoelectron spectroscopy for information on surface finish and quality, material removal and mechanisms. The study demonstrates that among the ten CMP slurries, the one with potassium ferrate as an oxidant provides the highest material removal rate of 0.055 mg/hour, and the best surface finish (Ra = 0.187 nm) and surface quality (no surface scratches nor pits), which is followed by potassium permanganate. It then discusses how mechanical stress may promote the chemical oxidation of an oxidant with diamond by forming “C-O” and “C=O” on diamond surface. The study concludes that chemical mechanical polishing is effective for CVD diamond films.


2020 ◽  
Vol 9 (4) ◽  
pp. 044007
Author(s):  
Aoxue Xu ◽  
Weili Liu ◽  
Gaoyang Zhao ◽  
Daohuan Feng ◽  
Weilei Wang ◽  
...  

2021 ◽  
Vol 11 (10) ◽  
pp. 4358
Author(s):  
Hanchul Cho ◽  
Taekyung Lee ◽  
Doyeon Kim ◽  
Hyoungjae Kim

The uniformity of the wafer in a chemical mechanical polishing (CMP) process is vital to the ultra-fine and high integration of semiconductor structures. In particular, the uniformity of the polishing pad corresponding to the tool directly affects the polishing uniformity and wafer shape. In this study, the profile shape of a CMP pad was predicted through a kinematic simulation based on the trajectory density of the diamond abrasives of the diamond conditioner disc. The kinematic prediction was found to be in good agreement with the experimentally measured pad profile shape. Based on this, the shape error of the pad could be maintained within 10 μm even after performing the pad conditioning process for more than 2 h, through the overhang of the conditioner.


Author(s):  
Peili Gao ◽  
Tingting Liu ◽  
Zhenyu Zhang ◽  
Fanning Meng ◽  
Run-Ping Ye ◽  
...  

2004 ◽  
Vol 471-472 ◽  
pp. 26-31 ◽  
Author(s):  
Jian Xiu Su ◽  
Dong Ming Guo ◽  
Ren Ke Kang ◽  
Zhu Ji Jin ◽  
X.J. Li ◽  
...  

Chemical mechanical polishing (CMP) has already become a mainstream technology in global planarization of wafer, but the mechanism of nonuniform material removal has not been revealed. In this paper, the calculation of particle movement tracks on wafer surface was conducted by the motion relationship between the wafer and the polishing pad on a large-sized single head CMP machine. Based on the distribution of particle tracks on wafer surface, the model for the within-wafer-nonuniformity (WIWNU) of material removal was put forward. By the calculation and analysis, the relationship between the motion variables of the CMP machine and the WIWNU of material removal on wafer surface had been derived. This model can be used not only for predicting the WIWNU, but also for providing theoretical guide to the design of CMP equipment, selecting the motion variables of CMP and further understanding the material removal mechanism in wafer CMP.


2021 ◽  
pp. 150359
Author(s):  
Qing Mu ◽  
Zhuji Jin ◽  
Xiaolong Han ◽  
Ying Yan ◽  
Zili Zhang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document