Ex Situ and In Situ Scanning X-Ray Fluorescence Imaging Study of Lithium Insertion into Sr2MnO2Cu4-δS3 for Li-Ion Batteries

2012 ◽  
Vol 24 (14) ◽  
pp. 2684-2691 ◽  
Author(s):  
Rosa Robert ◽  
Dongli Zeng ◽  
Antonio Lanzirotti ◽  
Paul Adamson ◽  
Simon J. Clarke ◽  
...  

2022 ◽  
Vol 520 ◽  
pp. 230818
Author(s):  
Wenjia Du ◽  
Rhodri E. Owen ◽  
Anmol Jnawali ◽  
Tobias P. Neville ◽  
Francesco Iacoviello ◽  
...  

Author(s):  
Partha P. Paul ◽  
Chuntian Cao ◽  
Vivek Thampy ◽  
Hans-Georg Steinrück ◽  
Tanvir R. Tanim ◽  
...  

ChemSusChem ◽  
2019 ◽  
Vol 12 (10) ◽  
pp. 2240-2250 ◽  
Author(s):  
Lea de Biasi ◽  
Alexander Schiele ◽  
Maria Roca‐Ayats ◽  
Grecia Garcia ◽  
Torsten Brezesinski ◽  
...  

2010 ◽  
Vol 25 (8) ◽  
pp. 1601-1616 ◽  
Author(s):  
Jordi Cabana ◽  
Christopher S. Johnson ◽  
Xiao-Qing Yang ◽  
Kyung-Yoon Chung ◽  
Won-Sub Yoon ◽  
...  

The complexity of layered-spinel yLi2MnO3·(1 – y)Li1+xMn2–xO4 (Li:Mn = 1.2:1; 0 ≤ x ≤ 0.33; y ≥ 0.45) composites synthesized at different temperatures has been investigated by a combination of x-ray diffraction (XRD), x-ray absorption spectroscopy (XAS), and nuclear magnetic resonance (NMR). While the layered component does not change substantially between samples, an evolution of the spinel component from a high to a low lithium excess phase has been traced with temperature by comparing with data for pure Li1+xMn2–xO4. The changes that occur to the structure of the spinel component and to the average oxidation state of the manganese ions within the composite structure as lithium is electrochemically removed in a battery have been monitored using these techniques, in some cases in situ. Our 6Li NMR results constitute the first direct observation of lithium removal from Li2MnO3 and the formation of LiMnO2 upon lithium reinsertion.


2004 ◽  
Vol 49 (20) ◽  
pp. 3373-3382 ◽  
Author(s):  
S Mukerjee ◽  
X.Q Yang ◽  
X Sun ◽  
S.J Lee ◽  
J McBreen ◽  
...  

2013 ◽  
Vol 4 ◽  
pp. 665-670 ◽  
Author(s):  
Mario Marinaro ◽  
Santhana K Eswara Moorthy ◽  
Jörg Bernhard ◽  
Ludwig Jörissen ◽  
Margret Wohlfahrt-Mehrens ◽  
...  

Aprotic rechargeable Li–O2 batteries are currently receiving considerable interest because they can possibly offer significantly higher energy densities than conventional Li-ion batteries. The electrochemical behavior of Li–O2 batteries containing bis(trifluoromethane)sulfonimide lithium salt (LiTFSI)/tetraglyme electrolyte were investigated by galvanostatic cycling and electrochemical impedance spectroscopy measurements. Ex-situ X-ray diffraction and scanning electron microscopy were used to evaluate the formation/dissolution of Li2O2 particles at the cathode side during the operation of Li–O2 cells.


2003 ◽  
Vol 118 (13) ◽  
pp. 6038-6045 ◽  
Author(s):  
Michel Letellier ◽  
Frédéric Chevallier ◽  
Christian Clinard ◽  
Elzbieta Frackowiak ◽  
Jean-Noël Rouzaud ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document