scholarly journals In-Situ Transmission X-Ray Microscopy Probed by Synchrotron Radiation for Li-Ion Batteries

2018 ◽  
Vol 6 ◽  
Author(s):  
Nai-Hsuan Yang ◽  
Yen-Fang Song ◽  
Ru-Shi Liu
2018 ◽  
Vol 25 (1) ◽  
pp. 151-165 ◽  
Author(s):  
Tibebu Alemu ◽  
Fu-Ming Wang

Observing the electronic structure, compositional change and morphological evolution of the surface and interface of a battery during operation provides essential information for developing new electrode materials for Li-ion batteries (LIBs); this is because such observations demonstrate the fundamental reactions occurring inside the electrode materials. Moreover, obtaining detailed data on chemical phase changes and distributions by analyzing an operating LIB is the most effective method for exploring the intercalation/de-intercalation process, kinetics and the relationship between phase change or phase distribution and battery performance, as well as for further optimizing the material synthesis routes for advanced battery materials. However, most conventionalin situelectrochemical techniques (other than by using synchrotron radiation) cannot clearly or precisely demonstrate structural change, electron valence change and chemical mapping information.In situelectrochemical-synchrotron radiation techniques such as X-ray absorption spectroscopy, X-ray diffraction spectroscopy and transmission X-ray microscopy can deliver accurate information regarding LIBs. This paper reviews studies regarding various applications ofin situelectrochemical-synchrotron radiation such as crystallographic transformation, oxidation-state changes, characterization of the solid electrolyte interphase and Li-dendrite growth mechanism during the intercalation/de-intercalation process. The paper also presents the findings of previous review articles and the future direction of these methods.


Author(s):  
Partha P. Paul ◽  
Chuntian Cao ◽  
Vivek Thampy ◽  
Hans-Georg Steinrück ◽  
Tanvir R. Tanim ◽  
...  

ChemSusChem ◽  
2019 ◽  
Vol 12 (10) ◽  
pp. 2240-2250 ◽  
Author(s):  
Lea de Biasi ◽  
Alexander Schiele ◽  
Maria Roca‐Ayats ◽  
Grecia Garcia ◽  
Torsten Brezesinski ◽  
...  

2010 ◽  
Vol 25 (8) ◽  
pp. 1601-1616 ◽  
Author(s):  
Jordi Cabana ◽  
Christopher S. Johnson ◽  
Xiao-Qing Yang ◽  
Kyung-Yoon Chung ◽  
Won-Sub Yoon ◽  
...  

The complexity of layered-spinel yLi2MnO3·(1 – y)Li1+xMn2–xO4 (Li:Mn = 1.2:1; 0 ≤ x ≤ 0.33; y ≥ 0.45) composites synthesized at different temperatures has been investigated by a combination of x-ray diffraction (XRD), x-ray absorption spectroscopy (XAS), and nuclear magnetic resonance (NMR). While the layered component does not change substantially between samples, an evolution of the spinel component from a high to a low lithium excess phase has been traced with temperature by comparing with data for pure Li1+xMn2–xO4. The changes that occur to the structure of the spinel component and to the average oxidation state of the manganese ions within the composite structure as lithium is electrochemically removed in a battery have been monitored using these techniques, in some cases in situ. Our 6Li NMR results constitute the first direct observation of lithium removal from Li2MnO3 and the formation of LiMnO2 upon lithium reinsertion.


2004 ◽  
Vol 49 (20) ◽  
pp. 3373-3382 ◽  
Author(s):  
S Mukerjee ◽  
X.Q Yang ◽  
X Sun ◽  
S.J Lee ◽  
J McBreen ◽  
...  

2008 ◽  
Vol 53 (21) ◽  
pp. 6064-6069 ◽  
Author(s):  
F.U. Renner ◽  
H. Kageyama ◽  
Z. Siroma ◽  
M. Shikano ◽  
S. Schöder ◽  
...  

2013 ◽  
Author(s):  
Johanna Nelson ◽  
Yuan Yang ◽  
Sumohan Misra ◽  
Joy C. Andrews ◽  
Yi Cui ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document